Nejvíce citovaný článek - PubMed ID 24260147
Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
- MeSH
- cukry metabolismus MeSH
- cytokininy * metabolismus MeSH
- ječmen (rod) * genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sacharosa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
- cytokininy * MeSH
- rostlinné proteiny MeSH
- sacharosa MeSH
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
- Klíčová slova
- Hulk/Deadpool, aromatic cytokinins, cis-zeatin, cytokinin biosynthesis, cytokinin oxidase/dehydrogenase, cytokinin signalling, cytokinin transport, cytokinins, isopentenyl transferase,
- MeSH
- Arabidopsis metabolismus MeSH
- biologické modely MeSH
- biologický transport MeSH
- biotest MeSH
- cytokininy metabolismus MeSH
- fyziologie rostlin * MeSH
- glykosylace MeSH
- hydrolýza MeSH
- kinetika MeSH
- kinetin metabolismus MeSH
- oxidoreduktasy metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce * MeSH
- vazba proteinů MeSH
- zeatin analogy a deriváty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokinin oxidase MeSH Prohlížeč
- cytokininy MeSH
- dihydrozeatin MeSH Prohlížeč
- kinetin MeSH
- oxidoreduktasy MeSH
- regulátory růstu rostlin MeSH
- zeatin MeSH
Cytokinins (CKs) are a class of phytohormones affecting many aspects of plant growth and development. In the complex process of CK homeostasis in plants, N-glucosylation represents one of the essential metabolic pathways. Its products, CK N7- and N9-glucosides, have been largely overlooked in the past as irreversible and inactive CK products lacking any relevant physiological impact. In this work, we report a widespread distribution of CK N-glucosides across the plant kingdom proceeding from evolutionary older to younger plants with different proportions between N7- and N9-glucosides in the total CK pool. We show dramatic changes in their profiles as well as in expression levels of the UGT76C1 and UGT76C2 genes during Arabidopsis ontogenesis. We also demonstrate specific physiological effects of CK N-glucosides in CK bioassays including their antisenescent activities, inhibitory effects on root development, and activation of the CK signaling pathway visualized by the CK-responsive YFP reporter line, TCSv2::3XVENUS. Last but not least, we present the considerable impact of CK N7- and N9-glucosides on the expression of CK-related genes in maize and their stimulatory effects on CK oxidase/dehydrogenase activity in oats. Our findings revise the apparent irreversibility and inactivity of CK N7- and N9-glucosides and indicate their involvement in CK evolution while suggesting their unique function(s) in plants.
- Klíčová slova
- Arabidopsis, N-glucosides, Zea mays, [2-3H]tZ9G, cis-zeatin, cytokinin, cytokinin oxidase/dehydrogenase, oat, senescence, trans-zeatin, β-D-glucosidase Zm-p60.1,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- cytokininy genetika MeSH
- glukosidy genetika MeSH
- glukosyltransferasy genetika MeSH
- kukuřice setá genetika metabolismus MeSH
- molekulární evoluce * MeSH
- oxidoreduktasy genetika MeSH
- regulace genové exprese u rostlin genetika MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- glukosidy MeSH
- glukosyltransferasy MeSH
- oxidoreduktasy MeSH
- regulátory růstu rostlin MeSH
Cytokinin is a phytohormone involved in the regulation of diverse developmental and physiological processes in plants. Its potential in biotechnology and for development of higher-yield and more resilient plants has been recognized, yet the molecular mechanisms behind its action are far from understood. In this report, the roots of barley seedlings were explored as a new source to reveal as yet unknown cytokinin-responsive proteins for crop improvement. Here we found significant differences reproducibly observed for 178 proteins, for which some of the revealed cytokinin-responsive pathways were confirmed in metabolome analysis, including alterations phenylpropanoid pathway, amino acid biosynthesis and ROS metabolism. Bioinformatics analysis indicated a significant overlap between cytokinin response and response to abiotic stress. This was confirmed by comparing proteome and metabolome profiles in response to drought, salinity or a period of temperature stress. The results illustrate complex abiotic stress response in the early development of model crop plant and confirm an extensive crosstalk between plant hormone cytokinin and response to temperature stimuli, water availability or salinity stress.
- Klíčová slova
- Hordeum vulgare, ROS, abiotic stress, metabolome, phenylpropanoid biosynthesis, proteome, root, zeatin,
- Publikační typ
- časopisecké články MeSH
Barley is one of the most important cereals, which is used for breweries, animal and human feeds. Genetic manipulation of plant hormone cytokinins may influence several physiological processes, besides others stress tolerance, root formation and crop yield. In planta, endogenous cytokinin status is finely regulated by the enzyme cytokinin dehydrogenase (EC 1.5.99.12; CKX), that irreversible degrades the side chain of adenine-derived isoprenoid cytokinins. Increasing grain yield by mean of manipulation of endogenous cytokinin content was assayed by the silencing of the HvCKX1 gene. Moreover, to elucidate the putative role of HvCKX1 gene on grain production, knocked-out Hvckx1 mutant plants were generated using the RNA-guided Cas9 system. Homozygote transgenic plants with silenced HvCKX1 gene and azygous knock-out Hvckx1 mutants have been selected and analyzed. Both reduced expression of HvCKX1 gene and CKX activity were measured in different stages of barley grain development. Phenotyping of the transgenic lines revealed reduced root growth, however, plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent. Although plant productivity was increased, total grain biomass was decreased to 80% of WT grains. RNA-seq analysis of knock-down transgenic lines revealed that several important macronutrient transporters were downregulated in the stage of massive starch accumulation. It suggests that local accumulation of cytokinins negatively affected nutrients flow resulting in reduced grain biomass. Obtained results confirmed the key role of HvCKX1 for regulation of cytokinin content in barley.
- Klíčová slova
- CRISPR-Cas9, barley, cytokinin, silencing, yield,
- Publikační typ
- časopisecké články MeSH
Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in all UGT mutants. In contrast, a specific regulation of CKX7, CKX1 and CKX2 was observed for each individual UGT mutant isoform after exogenous CK uptake. Employing an in silico prediction we proposed cytosolic localization of UGT76C1 and UGT76C2, that we further confirmed by GFP tagging of UGT76C2. Integrating all the results, we therefore hypothesize that UGTs possess different physiological roles in Arabidopsis and serve as a fine-tuning mechanism of active CK levels in cytosol.
- Klíčová slova
- Arabidopsis, GFP subcellular localization, cytokinin, glycosyltransferase, senescence,
- Publikační typ
- časopisecké články MeSH