Nejvíce citovaný článek - PubMed ID 24441936
Objective comparison of particle tracking methods
Single-molecule localization microscopy (SMLM) allows imaging beyond the diffraction limit. Detection of molecules is a crucial initial step in SMLM. False positive detections, which are not quantitatively controlled in current methods, are a source of artifacts that affect the entire SMLM analysis pipeline. Furthermore, current methods lack standardization, which hinders reproducibility. Here, we present an optimized molecule detection method which combines probabilistic thresholding with theoretically optimal filtering. The probabilistic thresholding enables control over false positive detections while optimal filtering minimizes false negatives. A theoretically optimal Poisson matched filter is used as a performance benchmark to evaluate existing filtering methods. Overall, our approach allows the detection of molecules in a robust, single-parameter and user-unbiased manner. This will minimize artifacts and enable data reproducibility in SMLM.
- Publikační typ
- časopisecké články MeSH
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
- MeSH
- algoritmy * MeSH
- počítačové zpracování obrazu * MeSH
- sémantika MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open-source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user-centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
- Klíčová slova
- Fiji, ImageJ, image analysis, imaging, microscopy, open source software,
- MeSH
- počítačové zpracování obrazu * MeSH
- software * MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
- Klíčová slova
- Biomedical challenges, Biomedical image analysis, Good scientific practice, Guideline,
- MeSH
- biomedicínský výzkum * MeSH
- kontrolní seznam * MeSH
- lidé MeSH
- prognóza MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Image analysis is key to extracting quantitative information from scientific microscopy images, but the methods involved are now often so refined that they can no longer be unambiguously described by written protocols. We introduce BIAFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark bioimage analysis workflows coming from any software ecosystem. A curated instance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy image datasets recapitulating common bioimage analysis problems is available online. The workflows can be launched and assessed remotely by comparing their performance visually and according to standard benchmark metrics. We illustrated these features by comparing seven nuclei segmentation workflows, including deep-learning methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows, hence safeguarding research results and promoting high-quality standards in image analysis. The platform is thoroughly documented and ready to gather annotated microscopy datasets and workflows contributed by the bioimaging community.
- Klíčová slova
- benchmarking, bioimaging, community, deep learning, deployment, image analysis, reproducibility, software, web application,
- Publikační typ
- časopisecké články MeSH
MOTIVATION: Objective assessment of bioimage analysis methods is an essential step towards understanding their robustness and parameter sensitivity, calling for the availability of heterogeneous bioimage datasets accompanied by their reference annotations. Because manual annotations are known to be arduous, highly subjective and barely reproducible, numerous simulators have emerged over past decades, generating synthetic bioimage datasets complemented with inherent reference annotations. However, the installation and configuration of these tools generally constitutes a barrier to their widespread use. RESULTS: We present a modern, modular web-interface, CytoPacq, to facilitate the generation of synthetic benchmark datasets relevant for multi-dimensional cell imaging. CytoPacq poses a user-friendly graphical interface with contextual tooltips and currently allows a comfortable access to various cell simulation systems of fluorescence microscopy, which have already been recognized and used by the scientific community, in a straightforward and self-contained form. AVAILABILITY AND IMPLEMENTATION: CytoPacq is a publicly available online service running at https://cbia.fi.muni.cz/simulator. More information about it as well as examples of generated bioimage datasets are available directly through the web-interface. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- MeSH
- počítačová simulace MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.
- MeSH
- biomedicínské technologie klasifikace metody normy MeSH
- biomedicínský výzkum metody normy MeSH
- diagnostické zobrazování klasifikace metody normy MeSH
- hodnocení biomedicínských technologií metody normy MeSH
- lidé MeSH
- počítačové zpracování obrazu metody normy MeSH
- průzkumy a dotazníky MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
- Klíčová slova
- Mason-Pfizer monkey virus, endosomes, envelope, intracellular trafficking, transport, virus-like particles,
- MeSH
- AIDS opičí virologie MeSH
- buněčná membrána metabolismus virologie MeSH
- endozomy metabolismus virologie MeSH
- genové produkty env genetika metabolismus MeSH
- Masonův-Pfizerův opičí virus genetika fyziologie MeSH
- sestavení viru MeSH
- transport proteinů MeSH
- transportní vezikuly metabolismus virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty env MeSH
We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.
- MeSH
- algoritmy * MeSH
- benchmarking MeSH
- buněčné linie MeSH
- buněčný tracking metody MeSH
- interpretace obrazu počítačem * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs.