Most cited article - PubMed ID 24749727
APOE and spatial navigation in amnestic MCI: results from a computer-based test
BACKGROUND: Spatial navigation deficits are early symptoms of Alzheimer's disease (AD). The apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for AD. This study investigated effects of APOE genotype on spatial navigation in biomarker-defined individuals with amnestic mild cognitive impairment (aMCI) and associations of AD biomarkers and atrophy of AD-related brain regions with spatial navigation. METHODS: 107 participants, cognitively normal older adults (CN, n = 48) and aMCI individuals stratified into AD aMCI (n = 28) and non-AD aMCI (n = 31) groups, underwent cognitive assessment, brain MRI, and spatial navigation assessment using the Virtual Supermarket Test with egocentric and allocentric tasks and a self-report questionnaire. Cerebrospinal fluid (CSF) biomarkers (amyloid-β1-42, phosphorylated tau181 and total tau) and amyloid PET imaging were assessed in aMCI participants. RESULTS: AD aMCI participants had the highest prevalence of APOE ε4 carriers and worst allocentric navigation. CSF levels of AD biomarkers and atrophy in AD-related brain regions were associated with worse allocentric navigation. Between-group differences in spatial navigation and associations with AD biomarkers and regional brain atrophy were not influenced by APOE genotype. Self-reported navigation ability was similar across groups and unrelated to spatial navigation performance. CONCLUSIONS: These findings suggest that allocentric navigation deficits in aMCI individuals are predominantly driven by AD pathology, independent of APOE genotype. This highlights the role of AD pathology as measured by biomarkers, rather than genetic status, as a major factor in navigational impairment in aMCI, and emphasizes the assessment of spatial navigation as a valuable tool for early detection of AD.
- Keywords
- Allocentric navigation, Amyloid-β, Egocentric navigation, Entorhinal cortex, Hippocampus, Tau protein,
- MeSH
- Alzheimer Disease * genetics cerebrospinal fluid diagnostic imaging complications physiopathology pathology MeSH
- Amyloid beta-Peptides cerebrospinal fluid MeSH
- Apolipoprotein E4 * genetics MeSH
- Apolipoproteins E * genetics MeSH
- Atrophy MeSH
- Biomarkers cerebrospinal fluid MeSH
- Genotype MeSH
- Cognitive Dysfunction * genetics cerebrospinal fluid diagnostic imaging physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain pathology diagnostic imaging MeSH
- Neuropsychological Tests MeSH
- Peptide Fragments cerebrospinal fluid MeSH
- Positron-Emission Tomography MeSH
- Spatial Navigation * physiology MeSH
- tau Proteins cerebrospinal fluid MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- amyloid beta-protein (1-42) MeSH Browser
- Amyloid beta-Peptides MeSH
- Apolipoprotein E4 * MeSH
- Apolipoproteins E * MeSH
- Biomarkers MeSH
- Peptide Fragments MeSH
- tau Proteins MeSH
Impaired spatial navigation is early marker of Alzheimer's disease (AD). We examined ability of self- and informant-reported navigation questionnaires to discriminate between clinically and biomarker-defined participants, and associations of questionnaires with navigation performance, regional brain atrophy, AD biomarkers, and biomarker status. 262 participants (cognitively normal, with subjective cognitive decline, amnestic mild cognitive impairment [aMCI], and mild dementia) and their informants completed three navigation questionnaires. Navigation performance, magnetic resonance imaging volume/thickness of AD-related brain regions, and AD biomarkers were measured. Informant-reported questionnaires distinguished between cognitively normal and impaired participants, and amyloid-β positive and negative aMCI. Lower scores were associated with worse navigation performance, greater atrophy in AD-related brain regions, and amyloid-β status. Self-reported questionnaire scores did not distinguish between the groups and were weakly associated with navigation performance. Other associations were not significant. Informant-reported navigation questionnaires may be a screening tool for early AD reflecting atrophy of AD-related brain regions and AD pathology.
- Keywords
- Clinical neuroscience, Disease, Neuroscience,
- Publication type
- Journal Article MeSH
Impairment in spatial navigation (SN) and structural network topology is not limited to patients with Alzheimer's disease (AD) dementia and can be detected earlier in patients with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91 ± 11.33 years old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom underwent a computer-based battery of SN tests evaluating egocentric, allocentric, and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance Imaging (MRI). To evaluate the topological features of the structural connectivity network, we calculated its measures such as the global efficiency, local efficiency, clustering coefficient, and shortest path length with GRETNA. We determined the correlation between SN accuracy and network topological properties. Compared to NC, MCI subjects demonstrated a lower egocentric navigation accuracy. Compared with NC, MCI subjects showed significantly decreased clustering coefficients in the left middle frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal gyrus and decreased shortest path length in the left paracentral lobule. We observed significant positive correlations of the shortest path length in the left paracentral lobule with both the mixed allocentric-egocentric and the allocentric accuracy measured by the average total errors. A decreased clustering coefficient in the right inferior parietal gyrus was associated with a larger allocentric navigation error. White matter hyperintensities (WMH) did not affect the correlation between network properties and SN accuracy. This study demonstrated that structural connectivity network abnormalities, especially in the frontal and parietal gyri, are associated with a lower SN accuracy, independently of WMH, providing a new insight into the brain mechanisms associated with SN impairment in MCI.
- Keywords
- clustering coefficient, graph theory, mild cognitive impairment, network topology, spatial navigation,
- Publication type
- Journal Article MeSH
Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p < 0.001), Ch4p (r = -0.625, p < 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
- Keywords
- allocentric, basal forebrain, entorhinal cortex, spatial navigation, subjective cognitive decline,
- Publication type
- Journal Article MeSH
BACKGROUND: The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE: We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS: 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS: Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION: The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
- Keywords
- Alzheimer’s disease, Morris water maze, apolipoproteins E, brain-derived neurotrophic factor, entorhinal cortex, episodic memory, gene polymorphism, magnetic resonance imaging, mild cognitive impairment, spatial navigation,
- MeSH
- Apolipoprotein E4 genetics MeSH
- Cognitive Dysfunction genetics physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain-Derived Neurotrophic Factor genetics MeSH
- Polymorphism, Genetic MeSH
- Spatial Navigation physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Apolipoprotein E4 MeSH
- BDNF protein, human MeSH Browser
- Brain-Derived Neurotrophic Factor MeSH
PURPOSE: Identification of demographic, physical/physiological, lifestyle and genetic factors contributing to the onset of dementia, specifically Alzheimer disease (AD), and implementation of novel methods for early diagnosis are important to alleviate prevalence of dementia globally. The Czech Brain Aging Study (CBAS) is the first large, prospective study to address these issues in Central/Eastern Europe by enrolling non-demented adults aged 55+ years, collecting a variety of personal and biological measures and tracking cognitive function over time. PARTICIPANTS: The CBAS recruitment was initiated in 2011 from memory clinics at Brno and Prague University Hospitals, and by the end of 2018, the study included 1228 participants. Annual follow-ups include collection of socioeconomic, lifestyle and personal history information, neurology, neuropsychology, laboratory, vital sign and brain MRI data. In a subset, biomarker assessment (cerebrospinal fluid (CSF) and amyloid positron emission tomography) and spatial navigation were performed. Participants were 69.7±8.1 years old and had 14.6±3.3 years of education at baseline, and 59% were women. By the end of 2018, 31% finished three and more years of follow-up; 9% converted to dementia. Apolipoprotein E status is available from 95% of the participants. The biological sample bank linked to CBAS database contained CSF, serum and DNA. FINDINGS TO DATE: Overall, the findings, mainly from cross-sectional analyses, indicate that spatial navigation is a promising marker of early AD and that it can be distinguished from other cognitive functions. Specificity of several standard memory tests for early AD pathology was assessed with implications for clinical practice. The relationship of various lifestyle factors to cognition and brain atrophy was reported. FUTURE PLANS: Recruitment is ongoing with secured funding. Longitudinal data analyses are currently being conducted. Proposals for collaboration on specific data from the database or biospecimen, as well as collaborations with similar cohort studies to increase sample size, are welcome. Study details are available online (www.cbas.cz).
- Keywords
- dementia, epidemiology, mental health,
- MeSH
- Alzheimer Disease epidemiology MeSH
- Dementia epidemiology MeSH
- Risk Assessment MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Protective Factors MeSH
- Prospective Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Impairment of spatial navigation (SN) skills is one of the features of the Alzheimer's disease (AD) already at the stage of mild cognitive impairment (MCI). We used a computer-based battery of spatial navigation tests to measure the SN performance in 22 MCI patients as well as 21 normal controls (NC). In order to evaluate intrinsic activity in the subcortical regions that may play a role in SN, we measured ALFF, fALFF, and ReHo derived within 14 subcortical regions. We observed reductions of intrinsic activity in MCI patients. We also demonstrated that the MCI versus NC group difference can modulate activity-behavior relationship, that is, the correlation slopes between ReHo and allocentric SN task total errors were significantly different between NC and MCI groups in the right hippocampus (interaction F = 4.44, p = 0.05), pallidum (F = 8.97, p = 0.005), and thalamus (F = 5.95, p = 0.02), which were negative in NC (right hippocampus, r = -0.49; right pallidum, r = -0.50; right thalamus, r = -0.45; all p < 0.05) but absent in MCI (right hippocampus, r = 0.21; right pallidum, r = 0.32; right thalamus r = 0.28; all p > 0.2). These findings may provide a novel insight of the brain mechanism associated with SN impairment in MCI and indicated a stage specificity of brain-behavior correlation in dementia. This trial is registered with ChiCTR-BRC-17011316.
- MeSH
- Adult MeSH
- Functional Neuroimaging MeSH
- Globus Pallidus diagnostic imaging physiopathology MeSH
- Hippocampus diagnostic imaging physiopathology MeSH
- Cognitive Dysfunction diagnostic imaging physiopathology psychology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Neuropsychological Tests MeSH
- Spatial Navigation physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Thalamus diagnostic imaging physiopathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
RATIONALE: Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. OBJECTIVES: We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. METHODS: We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. RESULTS: Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. CONCLUSIONS: In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.
- Keywords
- Acetylcholinesterase inhibitor *, Human *, Rat *, Scopolamine *, Spatial orientation *,
- MeSH
- Muscarinic Antagonists pharmacology MeSH
- Maze Learning drug effects MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Donepezil MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Indans pharmacology MeSH
- Rats MeSH
- Humans MeSH
- Young Adult MeSH
- Piperidines pharmacology MeSH
- Rats, Wistar MeSH
- Spatial Navigation drug effects MeSH
- Scopolamine pharmacology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Muscarinic Antagonists MeSH
- Cholinesterase Inhibitors MeSH
- Donepezil MeSH
- Indans MeSH
- Piperidines MeSH
- Scopolamine MeSH
Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up.
- Keywords
- Gerotarget, diffusion tensor imaging, lacunar infarction, mild cognitive impairment, spatial navigation,
- MeSH
- Anisotropy MeSH
- White Matter diagnostic imaging physiopathology MeSH
- Diffusion Magnetic Resonance Imaging * MeSH
- Cognition * MeSH
- Cognitive Dysfunction diagnostic imaging physiopathology psychology MeSH
- Stroke, Lacunar diagnostic imaging physiopathology psychology MeSH
- Middle Aged MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Spatial Behavior * MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Space Perception * MeSH
- Diffusion Tensor Imaging * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH