Nejvíce citovaný článek - PubMed ID 25186727
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
- Klíčová slova
- CP: Molecular biology, PIWI, evolution, fertility, germ cell, mobile genetic element, piRNA, readthrough transcription, spermatogenesis, stress, transposon,
- MeSH
- druhová specificita MeSH
- lidé MeSH
- malá interferující RNA * metabolismus genetika MeSH
- myši MeSH
- Piwi-interagující RNA MeSH
- psi MeSH
- savci * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- srovnávací studie MeSH
- Názvy látek
- malá interferující RNA * MeSH
- Piwi-interagující RNA MeSH
- transpozibilní elementy DNA MeSH
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate the relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as the sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system. [African cichlids; Blenniiformes; Gene tree heterogeneity; Hybrid assembly; Phylogenetic network; Pseudocrenilabrinae; Species tree.].
Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.
- Klíčová slova
- Umbra, Robertsonian fusion, centric fission, genome expansion, repetitive sequences,
- MeSH
- délka genomu MeSH
- transpozibilní elementy DNA genetika MeSH
- Umbridae * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Parasites may have strong eco-evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite-mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species-specific resistance, consistent with parasite-mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite-mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite-mediated speciation, because it is host species-specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus-mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.
- Klíčová slova
- Lake Victoria, adaptive radiation, cichlid fish, diversification, host-parasite interaction, parasite-mediated selection, temporal consistency,
- MeSH
- cichlidy genetika parazitologie MeSH
- Copepoda MeSH
- ekosystém MeSH
- hostitelská specificita * MeSH
- selekce (genetika) * MeSH
- Trematoda * MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Tanzanie MeSH
BACKGROUND: The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. RESULTS: We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby's capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. CONCLUSIONS: The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish.
- Klíčová slova
- Adaptation, Detoxification, Epigenetics, Evolution, Fish, Gene duplication, Genomics, Innate immunity, Invasive species, Neogobius melanostomus, Olfaction, Osmoregulation, PacBio, Vision,
- MeSH
- genom * MeSH
- ryby genetika fyziologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- zvláštnosti životní historie * MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal 'rDNAome' consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.
- Klíčová slova
- AT/GC compositional evolution, fish cytogenomics, genome evolution, quantitative cytogenomics., rDNAome, repetitive sequences,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- cichlidy mikrobiologie fyziologie MeSH
- ekologie MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- fyziologie bakterií účinky záření MeSH
- genetická variace účinky záření MeSH
- jezera mikrobiologie MeSH
- sluneční záření MeSH
- stravovací zvyklosti účinky záření MeSH
- střevní mikroflóra * účinky záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Understanding the genetic basis of novel traits is a central topic in evolutionary biology. Two novel pigmentation phenotypes, egg-spots and blotches, emerged during the rapid diversification of East African cichlid fishes. Egg-spots are circular pigmentation markings on the anal fins of hundreds of derived haplochromine cichlids species, whereas blotches are patches of conspicuous anal fin pigmentation with ill-defined boundaries that occur in few species that belong to basal cichlid lineages. Both traits play an important role in the breeding behavior of this group of fishes. Knowledge about the origin, homology and underlying genetics of these pigmentation traits is sparse. RESULTS: Here, we present a comparative transcriptomic and differential gene expression analysis of egg-spots and blotches. We first conducted an RNA sequencing experiment where we compared egg-spot tissue with the remaining portion of egg-spot-free fin tissue using six individuals of Astatotilapia burtoni. We identified 1229 differentially expressed genes between the two tissue types. We then showed that rates of evolution of these genes are higher than average estimated on whole transcriptome data. Using quantitative real-time PCR, we found that 29 out of a subset of 46 differentially expressed genes showed an analogous expression pattern in another haplochromine species' egg-spots, Cynotilapia pulpican, strongly suggesting that these genes are involved in the egg-spot phenotype. Among these are the previously identified egg-spot gene fhl2a, two known patterning genes (hoxC12a and bmp3) as well as other pigmentation related genes such as asip. Finally, we analyzed the expression patterns of the same gene subset in two species that feature blotches instead of egg-spots, one haplochromine species (Pseudocrenilabrus philander) and one ectodine species (Callochromis macrops), revealing that the expression patterns in blotches and egg-spots are rather distinct. CONCLUSIONS: We identified several candidate genes that will serve as an important and useful resource for future research on the emergence and diversification of cichlid fishes' egg-spots. Only a limited degree of conservation of gene expression patterns was detected between the egg-spots of the derived haplochromines and blotches from ancestral haplochromines, as well as between the two types of blotches, suggesting an independent origin of these traits.
- Klíčová slova
- Blotches, Diversity, East African cichlids, Egg-spot, Gene expression, Pigmentation,
- MeSH
- anální kanál fyziologie MeSH
- cichlidy genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- pigmentace kůže genetika MeSH
- ploutve zvířat fyziologie MeSH
- regulace genové exprese MeSH
- rybí proteiny genetika MeSH
- sekvenční analýza RNA metody MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- rybí proteiny MeSH