Nejvíce citovaný článek - PubMed ID 25560632
Melanoma cells influence the differentiation pattern of human epidermal keratinocytes
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
- Klíčová slova
- melanoma, cancer microenvironment, cancer-associated fibroblast, cytokine, chemokine, growth factor,
- MeSH
- kůže cytologie patologie MeSH
- lidé MeSH
- melanocyty patologie MeSH
- melanom sekundární MeSH
- mezibuněčná komunikace * MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové mikroprostředí * MeSH
- nádory kůže patologie MeSH
- nádory mozku sekundární MeSH
- nádory plic sekundární MeSH
- progrese nemoci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The steadily increasing incidence of malignant melanoma (MM) and its aggressive behaviour makes this tumour an attractive cancer research topic. The tumour microenvironment is being increasingly recognised as a key factor in cancer biology, with an impact on proliferation, invasion, angiogenesis and metastatic spread, as well as acquired therapy resistance. Multiple bioactive molecules playing cooperative roles promote the chronic inflammatory milieu in tumours, making inflammation a hallmark of cancer. This specific inflammatory setting is evident in the affected tissue. However, certain mediators can leak into the systemic circulation and affect the whole organism. The present study analysed the complex inflammatory response in the sera of patients with MM of various stages. Multiplexed proteomic analysis (Luminex Corporation) of 31 serum proteins was employed. These targets were observed in immunohistochemical profiles of primary tumours from the same patients. Furthermore, these proteins were analysed in MM cell lines and the principal cell population of the melanoma microenvironment, cancer‑associated fibroblasts. Growth factors such as hepatocyte growth factor, granulocyte‑colony stimulating factor and vascular endothelial growth factor, chemokines RANTES and interleukin (IL)‑8, and cytokines IL‑6, interferon‑α and IL‑1 receptor antagonist significantly differed in these patients compared with the healthy controls. Taken together, the results presented here depict the inflammatory landscape that is altered in melanoma patients, and highlight potentially relevant targets for therapy improvement.
- MeSH
- chemokiny krev MeSH
- dospělí MeSH
- fibroblasty asociované s nádorem metabolismus MeSH
- krevní proteiny analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanom krev metabolismus MeSH
- nádorové biomarkery krev MeSH
- nádorové buněčné linie MeSH
- pilotní projekty MeSH
- prognóza MeSH
- proteomika metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- chemokiny MeSH
- krevní proteiny MeSH
- nádorové biomarkery MeSH
Melanoma represents a malignant disease with steadily increasing incidence. UV-irradiation is a recognized key factor in melanoma initiation. Therefore, the efficient prevention of UV tissue damage bears a critical potential for melanoma prevention. In this study, we tested the effect of UV irradiation of normal keratinocytes and their consequent interaction with normal and cancer-associated fibroblasts isolated from melanoma, respectively. Using this model of UV influenced microenvironment, we measured melanoma cell migration in 3-D collagen gels. These interactions were studied using DNA microarray technology, immunofluorescence staining, single cell electrophoresis assay, viability (dead/life) cell detection methods, and migration analysis. We observed that three 10 mJ/cm2 fractions at equal intervals over 72 h applied on keratinocytes lead to a 50% increase (p < 0.05) in in vitro invasion of melanoma cells. The introduction cancer-associated fibroblasts to such model further significantly stimulated melanoma cells in vitro invasiveness to a higher extent than normal fibroblasts. A panel of candidate gene products responsible for facilitation of melanoma cells invasion was defined with emphasis on IL-6, IL-8, and CXCL-1. In conclusion, this study demonstrates a synergistic effect between cancer microenvironment and UV irradiation in melanoma invasiveness under in vitro condition.
- Klíčová slova
- Cancer microenvironment, Cancer-associated fibroblasts, Chemokine, Cytokine, Keratinocytes, Melanoma,
- MeSH
- fibroblasty cytologie patologie MeSH
- imunohistochemie MeSH
- invazivní růst nádoru * MeSH
- keratinocyty patologie účinky záření MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- melanom patologie MeSH
- ultrafialové záření * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The incidence of malignant melanoma is rapidly increasing and current medicine is offering only limited options for treatment of the advanced disease. For B‑Raf mutated melanomas, treatment with mutation‑specific drug inhibitors may be used. Unfortunately, tumors frequently acquire resistance to the treatment. Tumor microenvironment, namely cancer‑associated fibroblasts, largely influence this acquired resistance. In the present study, fibroblasts were isolated from a patient suffering from acrolentiginous melanoma (Breslow, 4.0 mm; Clark, IV; B‑Raf V600E mutated). The present study focused on the expression of structural and functional markers of fibroblast activation in melanoma‑associated fibroblasts (MAFs; isolated prior to therapy initiation) as well as in autologous control fibroblasts (ACFs) of the same patient isolated during B‑Raf inhibitor therapy, yet before clinical progression of the disease. Analysis of gene transcription was also performed, as well as DNA methylation status analysis at the genomic scale of both isolates. MAFs were positive for smooth muscle actin (SMA), which is a marker of myofibroblasts and the hallmark of cancer stoma. Surprisingly, ACF isolated from the distant uninvolved skin of the same patient also exhibited strong SMA expression. A similar phenotype was also observed in control dermal fibroblasts (CDFs; from different donors) exclusively following stimulation by transforming growth factor (TGF)‑β1. Immunohistochemistry confirmed that melanoma cells potently produce TGF‑β1. Significant differences were also identified in gene transcription and in DNA methylation status at the genomic scale. Upregulation of SMA was observed in ACF cells at the protein and transcriptional levels. The present results support recent experimental findings that tumor microenvironment is driving resistance to B‑Raf inhibition in patients with melanoma. Such an activated microenvironment may be viable for the growth of circulating melanoma cells.
- MeSH
- bodová mutace MeSH
- chemorezistence * MeSH
- fibroblasty asociované s nádorem účinky léků metabolismus patologie MeSH
- lidé MeSH
- maligní melanom kůže MeSH
- melanom farmakoterapie genetika patologie MeSH
- metylace DNA MeSH
- nádorové buňky kultivované MeSH
- nádorové mikroprostředí * MeSH
- nádory kůže farmakoterapie genetika patologie MeSH
- protoonkogenní proteiny B-Raf antagonisté a inhibitory genetika MeSH
- senioři MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- protoonkogenní proteiny B-Raf MeSH
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
- Klíčová slova
- T-cell, biomarker, cancer, cytokine, immunoassay, mass spectrometry, melanoma, proteomics, secretome, ultrasensitive,
- MeSH
- čipová analýza proteinů MeSH
- cytokiny analýza MeSH
- hmotnostní spektrometrie MeSH
- imunoanalýza MeSH
- imunoterapie MeSH
- lidé MeSH
- melanom diagnóza metabolismus terapie MeSH
- nádorové mikroprostředí MeSH
- nádory kůže diagnóza metabolismus terapie MeSH
- proteomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.
- Klíčová slova
- Cancer-associated fibroblast, Cytokine, Keratinocyte, Melanocyte, Melanoma cells, Melanoma ecosystem,
- MeSH
- časná detekce nádoru metody MeSH
- crista neuralis cytologie patologie MeSH
- indoly terapeutické užití MeSH
- keratinocyty MeSH
- lidé MeSH
- maligní melanom kůže MeSH
- melanocyty patologie MeSH
- melanom farmakoterapie epidemiologie patologie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory kůže MeSH
- protinádorové látky terapeutické užití MeSH
- sulfonamidy terapeutické užití MeSH
- ultrafialové záření škodlivé účinky MeSH
- vemurafenib MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- indoly MeSH
- protinádorové látky MeSH
- sulfonamidy MeSH
- vemurafenib MeSH
Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial‑mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period.
- MeSH
- aktiny metabolismus MeSH
- buněčná diferenciace MeSH
- crista neuralis cytologie MeSH
- dárci tkání * MeSH
- dospělí MeSH
- epitelové buňky cytologie metabolismus MeSH
- fenotyp MeSH
- fibroblasty cytologie metabolismus MeSH
- fibronektiny biosyntéza MeSH
- imunohistochemie MeSH
- keratinocyty cytologie metabolismus MeSH
- kmenové buňky metabolismus MeSH
- kokultivační techniky MeSH
- lidé MeSH
- mezoderm cytologie MeSH
- myofibroblasty cytologie MeSH
- nestin metabolismus MeSH
- neuroplasticita MeSH
- novorozenec MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- stárnutí fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACTA2 protein, human MeSH Prohlížeč
- aktiny MeSH
- fibronektiny MeSH
- nestin MeSH
Tumour microenvironment plays a critical role in cell invasion and metastasis. To investigate the role of cancer-associated fibroblasts (CAFs) in melanoma cell invasiveness, we used 3D spheroid invasion assay. The effect of conditioned media from normal fibroblasts and CAFs cultivated alone or co-cultivated with melanoma cells on BLM or A2058 melanoma spheroid invasion was analysed. We found that conditioned media from CAFs and CAFs co-cultured with melanoma cells, especially, promote invasion and migration, without significant effect on melanoma cell proliferation. We further analysed the expression of pro-invasive cytokines IL-8 and IL-6 in media and found that melanoma cells are dominant producers of IL-8 and fibroblasts are dominant producers of IL-6 in 2D monocultures, while co-cultivation of CAFs with melanoma cells induces production/secretion of IL-6 and IL-8 into the media. The analyses of IL-6 levels in 3D cultures and human melanoma samples, however, revealed that at least in some cases IL-6 is also produced directly by melanoma cells. Analysis of the role of IL-6 and IL-8 in CAF-induced melanoma invasion, using neutralising antibodies, revealed that simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. In summary, these experiments indicate the important role of CAFs and IL-8 and IL-6 cytokines in melanoma cell invasiveness.
- Klíčová slova
- 3D culture of melanoma cells, Cancer microenvironment, Cancer-associated fibroblasts, Chemokine, Cytokine, Invasiveness,
- MeSH
- ELISA MeSH
- fibroblasty asociované s nádorem účinky léků patologie MeSH
- imunohistochemie MeSH
- interleukin-6 analýza antagonisté a inhibitory metabolismus MeSH
- interleukin-8 analýza antagonisté a inhibitory metabolismus MeSH
- invazivní růst nádoru prevence a kontrola MeSH
- kokultivační techniky MeSH
- kultivační média speciální farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- melanom farmakoterapie metabolismus patologie MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- interleukin-6 MeSH
- interleukin-8 MeSH
- kultivační média speciální MeSH
Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.
- Klíčová slova
- cancer microenvironment, cancer-associated fibroblast, niche, stem cell, wound healing,
- MeSH
- epidermální buňky MeSH
- epitelové buňky patologie MeSH
- fibroblasty patologie MeSH
- hojení ran fyziologie MeSH
- keratinocyty patologie MeSH
- lidé MeSH
- melanom patologie MeSH
- mezenchymální kmenové buňky patologie MeSH
- nádorové kmenové buňky patologie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory kůže patologie MeSH
- nika kmenových buněk fyziologie MeSH
- vlasový folikul cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH