Most cited article - PubMed ID 26473842
Cancer Microenvironment: What Can We Learn from the Stem Cell Niche
The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .
- Keywords
- Cancer-associated fibroblasts, Exosomes, IL-6, IL-8, Melanoma, Proinflammatory cytokine,
- MeSH
- Exosomes metabolism MeSH
- Fibroblasts metabolism pathology MeSH
- Humans MeSH
- Melanoma, Experimental metabolism pathology MeSH
- Tumor Cells, Cultured MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
- Keywords
- IL-6, cancer ecosystem, cancer microenvironment, cancer-associated fibroblast, exosome,
- MeSH
- Exosomes metabolism MeSH
- Cancer-Associated Fibroblasts metabolism MeSH
- Interleukin-6 metabolism MeSH
- Humans MeSH
- Tumor Microenvironment MeSH
- Neoplasms metabolism MeSH
- Paracrine Communication MeSH
- Cell Movement MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
- Keywords
- IL-6, cancer microenvironment, head and neck cancer, targeted therapy,
- MeSH
- Interleukin-6 immunology metabolism MeSH
- Humans MeSH
- Tumor Microenvironment * MeSH
- Head and Neck Neoplasms immunology therapy MeSH
- Signal Transduction MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Interleukin-6 MeSH
Cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor stroma. CAFs can impact many important steps of cancerogenesis and may also influence treatment resistance. Some of these effects need the direct contact of CAFs and cancer cells, while some involve paracrine signals. In this study, we investigated the ability of head and neck squamous cell carcinomas (HNSCC) patient-derived CAFs to promote or inhibit the colony-forming ability of HNSCC cells. The effect of cisplatin on this promoting or inhibiting influence was also studied. The subsequent analysis focused on changes in the expression of genes associated with cancer progression. We found that cisplatin response in model HNSCC cancer cells was modified by coculture with CAFs, was CAF-specific, and different patient-derived CAFs had a different "sensitizing ratio". Increased expression of VEGFA, PGE2S, COX2, EGFR, and NANOG in cancer cells was characteristic for the increase of resistance. On the other hand, CCL2 expression was associated with sensitizing effect. Significantly higher amounts of cisplatin were found in CAFs derived from patients who subsequently experienced a recurrence. In conclusion, our results showed that CAFs could promote and/or inhibit colony-forming capability and cisplatin resistance in HNSCC cells via paracrine effects and subsequent changes in gene expression of cancer-associated genes in cancer cells.
- Keywords
- cancer recurrence, cancer-associated fibroblasts, cisplatin, coculture, head and neck cancer, patient-derived cell cultures, treatment resistance,
- MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Cisplatin pharmacology MeSH
- Squamous Cell Carcinoma of Head and Neck metabolism pathology MeSH
- Cancer-Associated Fibroblasts drug effects metabolism MeSH
- Coculture Techniques MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local metabolism pathology MeSH
- Cell Line, Tumor MeSH
- Head and Neck Neoplasms metabolism pathology MeSH
- Paracrine Communication drug effects MeSH
- Antineoplastic Agents pharmacology MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Tumor Stem Cell Assay MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cisplatin MeSH
- Antineoplastic Agents MeSH
Heterogeneous spheroids have recently acquired a prominent position in melanoma research because they incorporate microenvironmental cues relevant for melanoma. In this study, we focused on the analysis of microenvironmental factors introduced in melanoma heterogeneous spheroids by different dermal fibroblasts. We aimed to map the fibroblast diversity resulting from previously acquired damage caused by exposure to extrinsic and intrinsic stimuli. To construct heterogeneous melanoma spheroids, we used normal dermal fibroblasts from the sun-protected skin of a juvenile donor. We compared them to the fibroblasts from the sun-exposed photodamaged skin of an adult donor. Further, we analysed the spheroids by single-cell RNA sequencing. To validate transcriptional data, we also compared the immunohistochemical analysis of heterogeneous spheroids to melanoma biopsies. We have distinguished three functional clusters in primary human fibroblasts from melanoma spheroids. These clusters differed in the expression of (a) extracellular matrix-related genes, (b) pro-inflammatory factors, and (c) TGFβ signalling superfamily. We observed a broader deregulation of gene transcription in previously photodamaged cells. We have confirmed that pro-inflammatory cytokine IL-6 significantly enhances melanoma invasion to the extracellular matrix in our model. This supports the opinion that the aspects of ageing are essential for reliable melanoma 3D modelling in vitro.
- Keywords
- Interleukin-6, cytokine, extracellular matrix, fibroblasts, heterogeneity, melanoma, senescence-associated secretory phenotype, single-cell sequencing, spheroids, subpopulation,
- Publication type
- Journal Article MeSH
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
- Keywords
- melanoma, cancer microenvironment, cancer-associated fibroblast, cytokine, chemokine, growth factor,
- MeSH
- Skin cytology pathology MeSH
- Humans MeSH
- Melanocytes pathology MeSH
- Melanoma secondary MeSH
- Cell Communication * MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Tumor Microenvironment * MeSH
- Skin Neoplasms pathology MeSH
- Brain Neoplasms secondary MeSH
- Lung Neoplasms secondary MeSH
- Disease Progression MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The steadily increasing incidence of malignant melanoma (MM) and its aggressive behaviour makes this tumour an attractive cancer research topic. The tumour microenvironment is being increasingly recognised as a key factor in cancer biology, with an impact on proliferation, invasion, angiogenesis and metastatic spread, as well as acquired therapy resistance. Multiple bioactive molecules playing cooperative roles promote the chronic inflammatory milieu in tumours, making inflammation a hallmark of cancer. This specific inflammatory setting is evident in the affected tissue. However, certain mediators can leak into the systemic circulation and affect the whole organism. The present study analysed the complex inflammatory response in the sera of patients with MM of various stages. Multiplexed proteomic analysis (Luminex Corporation) of 31 serum proteins was employed. These targets were observed in immunohistochemical profiles of primary tumours from the same patients. Furthermore, these proteins were analysed in MM cell lines and the principal cell population of the melanoma microenvironment, cancer‑associated fibroblasts. Growth factors such as hepatocyte growth factor, granulocyte‑colony stimulating factor and vascular endothelial growth factor, chemokines RANTES and interleukin (IL)‑8, and cytokines IL‑6, interferon‑α and IL‑1 receptor antagonist significantly differed in these patients compared with the healthy controls. Taken together, the results presented here depict the inflammatory landscape that is altered in melanoma patients, and highlight potentially relevant targets for therapy improvement.
- MeSH
- Chemokines blood MeSH
- Adult MeSH
- Cancer-Associated Fibroblasts metabolism MeSH
- Blood Proteins analysis MeSH
- Middle Aged MeSH
- Humans MeSH
- Melanoma blood metabolism MeSH
- Biomarkers, Tumor blood MeSH
- Cell Line, Tumor MeSH
- Pilot Projects MeSH
- Prognosis MeSH
- Proteomics methods MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Chemokines MeSH
- Blood Proteins MeSH
- Biomarkers, Tumor MeSH
Similarly to other types of malignant tumours, the incidence of head and neck cancer is increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a significant impact on the biological properties of cancer cells. The microenvironment participates in the control of local aggressiveness of cancer cells, their growth, and their consequent migration to lymph nodes and distant organs during metastatic spread. In cancers originating from squamous epithelium, a similarity was demonstrated between the cancer microenvironment and healing wounds. In this review, we focus on the specificity of the microenvironment of head and neck cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential therapeutic application.
- Keywords
- IL-6, cancer, cancer ecosystem, cancer microenvironment, cancer therapy, cancer-associated fibroblast, cytokine, extracellular matrix, tumour-associated macrophages,
- Publication type
- Journal Article MeSH
- Review MeSH
Melanoma represents a malignant disease with steadily increasing incidence. UV-irradiation is a recognized key factor in melanoma initiation. Therefore, the efficient prevention of UV tissue damage bears a critical potential for melanoma prevention. In this study, we tested the effect of UV irradiation of normal keratinocytes and their consequent interaction with normal and cancer-associated fibroblasts isolated from melanoma, respectively. Using this model of UV influenced microenvironment, we measured melanoma cell migration in 3-D collagen gels. These interactions were studied using DNA microarray technology, immunofluorescence staining, single cell electrophoresis assay, viability (dead/life) cell detection methods, and migration analysis. We observed that three 10 mJ/cm2 fractions at equal intervals over 72 h applied on keratinocytes lead to a 50% increase (p < 0.05) in in vitro invasion of melanoma cells. The introduction cancer-associated fibroblasts to such model further significantly stimulated melanoma cells in vitro invasiveness to a higher extent than normal fibroblasts. A panel of candidate gene products responsible for facilitation of melanoma cells invasion was defined with emphasis on IL-6, IL-8, and CXCL-1. In conclusion, this study demonstrates a synergistic effect between cancer microenvironment and UV irradiation in melanoma invasiveness under in vitro condition.
- Keywords
- Cancer microenvironment, Cancer-associated fibroblasts, Chemokine, Cytokine, Keratinocytes, Melanoma,
- MeSH
- Fibroblasts cytology pathology MeSH
- Immunohistochemistry MeSH
- Neoplasm Invasiveness * MeSH
- Keratinocytes pathology radiation effects MeSH
- Coculture Techniques MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Melanoma pathology MeSH
- Ultraviolet Rays * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
- Keywords
- T-cell, biomarker, cancer, cytokine, immunoassay, mass spectrometry, melanoma, proteomics, secretome, ultrasensitive,
- MeSH
- Protein Array Analysis MeSH
- Cytokines analysis MeSH
- Mass Spectrometry MeSH
- Immunoassay MeSH
- Immunotherapy MeSH
- Humans MeSH
- Melanoma diagnosis metabolism therapy MeSH
- Tumor Microenvironment MeSH
- Skin Neoplasms diagnosis metabolism therapy MeSH
- Proteomics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH