Nejvíce citovaný článek - PubMed ID 26474787
Impact of repetitive DNA on sex chromosome evolution in plants
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
- Klíčová slova
- Bioinformatics, chromosome dissection, cytogenetics, dioecious plants, epigenetics, functional genetics, sex chromosomes, tandem repeats, transposable elements,
- MeSH
- chromozomy rostlin * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- rostliny genetika MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), known as oxi-mCs, garners significant interest in plants as potential epigenetic marks. While research in mammals has established a role in cell reprogramming, carcinogenesis, and gene regulation, their functions in plants remain unclear. In rice, 5hmC has been associated with transposable elements (TEs) and heterochromatin. This study utilizes Silene latifolia, a dioecious plant with heteromorphic sex chromosomes and a genome with a large proportion of TEs, which provides a favourable environment for the study of oxi-mCs in individual sexes. Notably, we detected surprisingly high levels of oxi-mCs in S. latifolia comparable with mammals. Nuclei showed enrichment in heterochromatic regions, except for 5hmC whose signal was homogeneously distributed. Intriguingly, the same X chromosome in females displayed overall enrichment of 5hmC and 5fC compared with its counterpart. This fact is shared with 5mC, resembling dosage compensation. Co-localization showed higher correlation between 5mC and 5fC than with 5hmC, indicating no potential relationship between 5hmC and 5fC. Additionally, the promoter of several sex-linked genes and sex-biased TEs clustered in a clear sex-dependent way. Together, these findings unveil a hypothetical role for oxi-mCs in S. latifolia sex chromosome development, warranting further exploration.
- Klíčová slova
- Silene latifolia, Cytosine modifications, dosage compensation, oxi-mCs, sex chromosomes, transposable elements,
- MeSH
- 5-methylcytosin metabolismus analogy a deriváty MeSH
- chromozomy rostlin * genetika MeSH
- epigeneze genetická MeSH
- pohlavní chromozomy * genetika MeSH
- Silene * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-methylcytosin MeSH
- transpozibilní elementy DNA MeSH
Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.
- Klíčová slova
- Chromosome fusion, FISH, Holocentric chromosome, Multiple sex chromosomes, W chromatin, satDNA,
- MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- můry * genetika MeSH
- pohlavní chromozomy genetika MeSH
- Saccharum * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Young sex chromosomes possess unique and ongoing dynamics that allow us to understand processes that have an impact on their evolution and divergence. The genus Silene includes species with evolutionarily young sex chromosomes, and two species of section Melandrium, namely Silene latifolia (24, XY) and Silene dioica (24, XY), are well-established models of sex chromosome evolution, Y chromosome degeneration, and sex determination. In both species, the X and Y chromosomes are strongly heteromorphic and differ in the genomic composition compared to the autosomes. It is generally accepted that for proper cell division, the longest chromosomal arm must not exceed half of the average length of the spindle axis at telophase. Yet, it is not clear what are the dynamics between males and females during mitosis and how the cell compensates for the presence of the large Y chromosome in one sex. Using hydroxyurea cell synchronization and 2D/3D microscopy, we determined the position of the sex chromosomes during the mitotic cell cycle and determined the upper limit for the expansion of sex chromosome non-recombining region. Using 3D specimen preparations, we found that the velocity of the large chromosomes is compensated by the distant positioning from the central interpolar axis, confirming previous mathematical modulations.
- Klíčová slova
- Silene, central interpolar axis, chromosome velocity, sex chromosomes, sister chromatid division,
- MeSH
- chromatidy fyziologie MeSH
- chromozomy rostlin fyziologie MeSH
- hybridizace in situ fluorescenční MeSH
- hydroxymočovina farmakologie MeSH
- konfokální mikroskopie MeSH
- mitóza MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy fyziologie MeSH
- Silene genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydroxymočovina MeSH
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
- Klíčová slova
- Lepidoptera, W chromatin, holocentric chromosomes, repetitive DNAs, tandem repeat,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Dioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes. METHODS: We flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons. KEY RESULTS: We identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes. CONCLUSIONS: The X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.
- Klíčová slova
- Rumex acetosa, genome dynamics, satellites, sex chromosomes, transposable elements,
- MeSH
- chromozomy rostlin MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy MeSH
- retroelementy MeSH
- Rumex * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy MeSH
Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.
- Klíčová slova
- C-banding, FISH, GATA, evolution, heterochromatin, karyotype, microsatellites, sex chromosomes, telomeres,
- MeSH
- chromozomy genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- heterochromatin genetika ultrastruktura MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- mikrosatelitní repetice genetika MeSH
- molekulární evoluce * MeSH
- nukleotidové motivy MeSH
- pohlavní chromozomy genetika MeSH
- pruhování chromozomů MeSH
- repetitivní sekvence nukleových kyselin MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- heterochromatin MeSH
BACKGROUND: The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. SCOPE: This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. CONCLUSIONS: We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
BACKGROUND: S. latifolia is a model organism for the study of sex chromosome evolution in plants. Its sex chromosomes include large regions in which recombination became gradually suppressed. The regions tend to expand over time resulting in the formation of evolutionary strata. Non-recombination and later accumulation of repetitive sequences is a putative cause of the size increase in the Y chromosome. Gene decay and accumulation of repetitive DNA are identified as key evolutionary events. Transposons in the X and Y chromosomes are distributed differently and there is a regulation of transposon insertion by DNA methylation of the target sequences, this points to an important role of DNA methylation during sex chromosome evolution in Silene latifolia. The aim of this study was to elucidate whether the reduced expression of the Y allele in S. latifolia is caused by genetic degeneration or if the cause is methylation triggered by transposons and repetitive sequences. RESULTS: Gene expression analysis in S. latifolia males has shown expression bias in both X and Y alleles. To determine whether these differences are caused by genetic degeneration or methylation spread by transposons and repetitive sequences, we selected several sex-linked genes with varying degrees of degeneration and from different evolutionary strata. Immunoprecipitation of methylated DNA (MeDIP) from promoter, exon and intron regions was used and validated through bisulfite sequencing. We found DNA methylation in males, and only in the promoter of genes of stratum I (older). The Y alleles in genes of stratum I were methylation enriched compared to X alleles. There was also abundant and high percentage methylation in the CHH context in most sequences, indicating de novo methylation through the RdDM pathway. CONCLUSIONS: We speculate that TE accumulation and not gene decay is the cause of DNA methylation in the S. latifolia Y sex chromosome with influence on the process of heterochromatinization.
- Klíčová slova
- DNA methylation, Epigenetics, Immunoprecipitation, Sex chromosomes, Sex-linked genes, Silene latifolia, Sodium bisulfite, Y degeneration,
- MeSH
- chromozomy rostlin * MeSH
- DNA rostlinná chemie MeSH
- exprese genu MeSH
- listy rostlin metabolismus MeSH
- metylace DNA * MeSH
- molekulární evoluce * MeSH
- sekvenční homologie nukleových kyselin MeSH
- Silene genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: The rise and fall of the Y chromosome was demonstrated in animals but plants often possess the large evolutionarily young Y chromosome that is thought has expanded recently. Break-even points dividing expansion and shrinkage phase of plant Y chromosome evolution are still to be determined. To assess the size dynamics of the Y chromosome, we studied intraspecific genome size variation and genome composition of male and female individuals in a dioecious plant Silene latifolia, a well-established model for sex-chromosomes evolution. RESULTS: Our genome size data are the first to demonstrate that regardless of intraspecific genome size variation, Y chromosome has retained its size in S. latifolia. Bioinformatics study of genome composition showed that constancy of Y chromosome size was caused by Y chromosome DNA loss and the female-specific proliferation of recently active dominant retrotransposons. We show that several families of retrotransposons have contributed to genome size variation but not to Y chromosome size change. CONCLUSIONS: Our results suggest that the large Y chromosome of S. latifolia has slowed down or stopped its expansion. Female-specific proliferation of retrotransposons, enlarging the genome with exception of the Y chromosome, was probably caused by silencing of highly active retrotransposons in males and represents an adaptive mechanism to suppress degenerative processes in the haploid stage. Sex specific silencing of transposons might be widespread in plants but hidden in traditional hermaphroditic model plants.
- Klíčová slova
- Epigenetics, Genome size, Silene latifolia, Transposable elements, Y chromosome,
- MeSH
- chromozomy rostlin * MeSH
- délka genomu MeSH
- DNA rostlinná * MeSH
- genom rostlinný MeSH
- hybridizace in situ fluorescenční MeSH
- koncové repetice MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- retroelementy * MeSH
- sekvenční delece * MeSH
- Silene klasifikace genetika MeSH
- umlčování genů * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná * MeSH
- retroelementy * MeSH