Nejvíce citovaný článek - PubMed ID 26610516
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy
This study investigates the effects of incorporating ZnO, TiO2, and colloidal Ag nanoparticles on the antioxidant, antimicrobial, and physical properties of biodegradable chitosan films. The research focuses on addressing the growing demand for sustainable packaging solutions that offer efficient food preservation while mitigating environmental concerns. In this investigation, the physical properties including thickness, water content, solubility, swelling degree, tensile strength, and elasticity of the chitosan films were examined. Additionally, the samples were analyzed for total polyphenol content, antimicrobial activity, and antioxidant capacity. Notably, the incorporation of ZnO nanoparticles led to the lowest water content and highest strength values among the tested films. Conversely, the addition of colloidal Ag nanoparticles resulted in films with the highest antioxidant capacities (DPPH: 32.202 ± 1.631 %). Remarkably, antimicrobial tests revealed enhanced activity with the inclusion of colloidal silver nanoparticles, yet the most potent antimicrobial properties were observed in films containing ZnO (E.coli: 2.0 ± 0.0 mm; MRSA: 2.0 ± 0.5 mm). The findings of this study hold significant implications for the advancement of edible biodegradable films, offering potential for more efficient food packaging solutions that address environmental sustainability concerns. By elucidating the effects of nanoparticle incorporation on film properties, this research contributes to the ongoing discourse surrounding sustainable packaging solutions in the food industry.
- Klíčová slova
- Chemical and physical characterization, Nanoparticles, Packaging,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Staphylococcus capitis naturally colonizes the human skin but as an opportunistic pathogen, it can also cause biofilm-associated infections and bloodstream infections in newborns. Previously, we found that two strains from the subspecies S. capitis subsp. capitis produce yellow carotenoids despite the initial species description, reporting this subspecies as non-pigmented. In Staphylococcus aureus, the golden pigment staphyloxanthin is an important virulence factor, protecting cells against reactive oxygen species and modulating membrane fluidity. METHODS: In this study, we used two pigmented (DSM 111179 and DSM 113836) and two non-pigmented S. capitis subsp. capitis strains (DSM 20326T and DSM 31028) to identify the pigment, determine conditions under which pigment-production occurs and investigate whether pigmented strains show increased resistance to ROS and temperature stress. RESULTS: We found that the non-pigmented strains remained colorless regardless of the type of medium, whereas intensity of pigmentation in the two pigmented strains increased under low nutrient conditions and with longer incubation times. We were able to detect and identify staphyloxanthin and its derivates in the two pigmented strains but found that methanol cell extracts from all four strains showed ROS scavenging activity regardless of staphyloxanthin production. Increased survival to cold temperatures (-20°C) was detected in the two pigmented strains only after long-term storage compared to the non-pigmented strains. CONCLUSION: The identification of staphyloxanthin in S. capitis is of clinical relevance and could be used, in the same way as in S. aureus, as a possible target for anti-virulence drug design.
- Klíčová slova
- Staphylococcus capitis, bacterial pigments, carotenoids, coagulase-negative staphylococci (CoNS), staphyloxanthin,
- Publikační typ
- časopisecké články MeSH
Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.
- Klíčová slova
- Aspergillus niger, cosmic radiation, melanin, pyomelanin, radioprotection, space exploration,
- Publikační typ
- časopisecké články MeSH
The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections. We included 305 microbial strains of 28 species acting as causative agents of bloodstream infections. Raman spectroscopy identified the strains from grown colonies, with 2.8% and 7% incorrectly identified strains using the support vector machine algorithm based on centered and uncentred principal-component analyses, respectively. We combined Raman spectroscopy with optical tweezers to speed up the process and captured and analyzed microbes directly from spiked human serum. The pilot study suggests that it is possible to capture individual microbial cells from human serum and characterize them by Raman spectroscopy with notable differences among different species. IMPORTANCE Bloodstream infections are among the most common causes of hospitalizations and are often life-threatening. To establish an effective therapy for a patient, the timely identification of the causative agent and characterization of its antimicrobial susceptibility and resistance profiles are essential. Therefore, our multidisciplinary team of microbiologists and physicists presents a method that reliably, rapidly, and inexpensively identifies pathogens causing bloodstream infections-Raman spectroscopy. We believe that it might become a valuable diagnostic tool in the future. Combined with optical trapping, it offers a new approach where the microorganisms are individually trapped in a noncontact way by optical tweezers and investigated by Raman spectroscopy directly in a liquid sample. Together with the automatic processing of measured Raman spectra and comparison with a database of microorganisms, it makes the whole identification process almost real time.
- Klíčová slova
- Candida, Raman spectroscopy, Raman tweezers, bacteria, bloodstream infections, diagnostics, sepsis,
- MeSH
- algoritmy MeSH
- lidé MeSH
- optická pinzeta MeSH
- pilotní projekty MeSH
- Ramanova spektroskopie * metody MeSH
- sepse * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.
- Klíčová slova
- diffusion, extracellular matrix, hydrogel, lecithin, model drugs, scanning electron microscopy, transport properties,
- Publikační typ
- časopisecké články MeSH
Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.
- Klíčová slova
- Raman spectroscopy, Raman tweezers, antimicrobial resistance, diagnostics, identification of microorganisms, magnetic beads, microfluidic devices,
- MeSH
- analýza jednotlivých buněk MeSH
- antiinfekční látky * MeSH
- faktory virulence MeSH
- lidé MeSH
- Ramanova spektroskopie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky * MeSH
- faktory virulence MeSH
The aim of the research was to produce edible packaging based on chitosan with the addition of various concentrations of extracts of blueberry, red grape and parsley marcs. Packaging was made from extrudate extracts, which were subsequently analyzed by physicochemical methods: zeta-potential, gas barrier properties, thickness, water content, solubility, swelling degree, textural properties, total polyphenol content (TPC), polyphenols by high pressure liquid chromatography (HPLC), antioxidant activity, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), antimicrobial activity and determination of migration of bioactive substances. The results indicate that a higher content of plant extracts have a statistically significant (p < 0.05) influence on properties of experimentally produced edible films. Edible films produced with the highest concentrations of red grapes marc extracts showed the most advantageous properties since antimicrobial activity against E. coli were the highest in this kind of produced film. The physical properties of edible films were also improved by the addition of extracts; gas permeability toward oxygen can be defined as advantageous, as can swelling degree, which decreased with higher concentrations of extracts. The research emphasized the possibility to use plant foodstuffs by-products in the production of edible/biodegradable films, helping in the overall sustainability and eco-friendliness of food/package production.
- Klíčová slova
- FTIR, antimicrobial properties, antioxidant activity, barrier properties,
- Publikační typ
- časopisecké články MeSH
Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.
- Klíčová slova
- E. coli, Raman micro-spectroscopy, antibiotics, optical tweezers, opto-fluidics,
- MeSH
- analýza hlavních komponent MeSH
- antibakteriální látky škodlivé účinky MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- laboratoř na čipu * MeSH
- mikromanipulace metody MeSH
- optická pinzeta * MeSH
- Ramanova spektroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.
- MeSH
- agar MeSH
- analýza hlavních komponent MeSH
- časové faktory MeSH
- diagnostické testy rutinní MeSH
- fluorescence MeSH
- odběr biologického vzorku MeSH
- Ramanova spektroskopie metody MeSH
- Staphylococcus izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agar MeSH