Most cited article - PubMed ID 27404282
NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene
The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.
- Keywords
- DNA-adducts, Sudan I, benzo[a]pyrene, cytochromes P450 1A1 and 1A2 and 1B1, genotoxicity, microsomal epoxide hydrolase,
- MeSH
- DNA Adducts toxicity MeSH
- Coloring Agents toxicity MeSH
- Benzo(a)pyrene toxicity MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Microsomes, Liver drug effects MeSH
- Liver drug effects MeSH
- Carcinogens, Environmental toxicity MeSH
- Rats MeSH
- Naphthols toxicity MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1-phenylazo-2-naphthol MeSH Browser
- DNA Adducts MeSH
- Coloring Agents MeSH
- benzo(a)pyrene-DNA adduct MeSH Browser
- Benzo(a)pyrene MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Carcinogens, Environmental MeSH
- Naphthols MeSH
Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied using hepatic microsomal samples of different human donors, human recombinant cytochromes P450 (CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4 activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we examined the kinetics of this oxidation. The present study provides substantial insights into the metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics towards possible utilization in personalized medicine.
- Keywords
- cabozantinib, cytochrome P450, cytochrome b5, tyrosine kinase inhibitor,
- Publication type
- Journal Article MeSH
The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.
- Keywords
- cytochromes P450, flavin-containing monoxygenases, metabolism, tyrosine kinase inhibitor, vandetanib,
- MeSH
- Quinazolines chemistry pharmacology MeSH
- Cytochrome P-450 CYP3A chemistry metabolism MeSH
- Enzymes chemistry metabolism MeSH
- Protein Kinase Inhibitors chemistry pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Mice MeSH
- Oxidation-Reduction * MeSH
- Piperidines chemistry pharmacology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Recombinant Proteins MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Quinazolines MeSH
- Cytochrome P-450 CYP3A MeSH
- Enzymes MeSH
- Protein Kinase Inhibitors MeSH
- Piperidines MeSH
- Antineoplastic Agents MeSH
- Recombinant Proteins MeSH
- vandetanib MeSH Browser
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
- Keywords
- 17alpha-ethinylestradiol, Benzo[a]pyrene, Cytochrome P450, DNA-adducts, Endocrine disruptors, Estradiol,
- MeSH
- Benzo(a)pyrene toxicity MeSH
- Cytochrome P-450 CYP1A1 biosynthesis genetics MeSH
- Endocrine Disruptors toxicity MeSH
- Estradiol toxicity MeSH
- Ethinyl Estradiol toxicity MeSH
- Microsomes, Liver drug effects enzymology MeSH
- Rats MeSH
- Rats, Wistar MeSH
- Gene Expression Regulation, Enzymologic * drug effects MeSH
- Drug Synergism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Benzo(a)pyrene MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Endocrine Disruptors MeSH
- Estradiol MeSH
- Ethinyl Estradiol MeSH
Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) can induce cytochrome P450 1A1 (CYP1A1) via a p53-dependent mechanism. The effect of different p53-activating chemotherapeutic drugs on CYP1A1 expression, and the resultant effect on BaP metabolism, was investigated in a panel of isogenic human colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-) or TP53(-/-) were treated for up to 48 h with 60 μM cisplatin, 50 μM etoposide or 5 μM ellipticine, each of which caused high p53 induction at moderate cytotoxicity (60-80% cell viability). We found that etoposide and ellipticine induced CYP1A1 in TP53(+/+) cells but not in TP53(-/-) cells, demonstrating that the mechanism of CYP1A1 induction is p53-dependent; cisplatin had no such effect. Co-incubation experiments with the drugs and 2.5 μM BaP showed that: (i) etoposide increased CYP1A1 expression in TP53(+/+) cells, and to a lesser extent in TP53(-/-) cells, compared to cells treated with BaP alone; (ii) ellipticine decreased CYP1A1 expression in TP53(+/+) cells in BaP co-incubations; and (iii) cisplatin did not affect BaP-mediated CYP1A1 expression. Further, whereas cisplatin and etoposide had virtually no influence on CYP1A1-catalysed BaP metabolism, ellipticine treatment strongly inhibited BaP bioactivation. Our results indicate that the underlying mechanisms whereby etoposide and ellipticine regulate CYP1A1 expression must be different and may not be linked to p53 activation alone. These results could be relevant for smokers, who are exposed to increased levels of BaP, when prescribing chemotherapeutic drugs. Beside gene-environment interactions, more considerations should be given to potential drug-environment interactions during chemotherapy.
- Keywords
- Benzo[a]pyrene, Cisplatin, Cytochrome P450, Ellipticine, Etoposide, Tumour suppressor p53,
- MeSH
- DNA Adducts metabolism MeSH
- Benzo(a)pyrene pharmacokinetics pharmacology MeSH
- Cisplatin pharmacology MeSH
- Cytochrome P-450 CYP1A1 biosynthesis metabolism MeSH
- Cytochrome P-450 CYP3A biosynthesis metabolism MeSH
- Ellipticines pharmacokinetics pharmacology MeSH
- Enzyme Induction drug effects MeSH
- Etoposide pharmacology MeSH
- Genes, p53 MeSH
- HCT116 Cells MeSH
- Carcinogens pharmacokinetics pharmacology MeSH
- Colorectal Neoplasms drug therapy genetics metabolism pathology MeSH
- Humans MeSH
- Activation, Metabolic MeSH
- Tumor Suppressor Protein p53 deficiency genetics metabolism MeSH
- DNA Damage MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Adducts MeSH
- Benzo(a)pyrene MeSH
- Cisplatin MeSH
- CYP1A1 protein, human MeSH Browser
- CYP3A4 protein, human MeSH Browser
- Cytochrome P-450 CYP1A1 MeSH
- Cytochrome P-450 CYP3A MeSH
- Ellipticines MeSH
- ellipticine MeSH Browser
- Etoposide MeSH
- Carcinogens MeSH
- Tumor Suppressor Protein p53 MeSH
- TP53 protein, human MeSH Browser
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
- MeSH
- DNA Adducts metabolism MeSH
- Benzo(a)pyrene metabolism MeSH
- Cytochrome-B(5) Reductase metabolism MeSH
- Hepatocytes enzymology MeSH
- Microsomes, Liver enzymology MeSH
- Mice, Knockout MeSH
- Mice MeSH
- NADPH-Ferrihemoprotein Reductase metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Adducts MeSH
- benzo(a)pyrene-DNA adduct MeSH Browser
- Benzo(a)pyrene MeSH
- Cytochrome-B(5) Reductase MeSH
- NADPH-Ferrihemoprotein Reductase MeSH
ABSTRACT: Cytochrome P450 (CYP) 1A1 is the most important enzyme activating and detoxifying the human carcinogen benzo[a]pyrene (BaP). In the previous studies, we had shown that not only the canonic NADPH:CYP oxidoreductase (POR) can act as electron donor but also cytochrome b5 and its reductase, NADH:cytochrome b5 reductase. Here, we studied the role of the expression system used on the metabolites generated and the levels of DNA adducts formed by activated BaP. We used an eukaryotic and a prokaryotic cellular system (Supersomes, microsomes isolated from insect cells, and Bactosomes, a membrane fraction of Escherichia coli, each transfected with cDNA of human CYP1A1 and POR). These were reconstituted with cytochrome b5 with and without NADH:cytochrome b5 reductase. We evaluated the effectiveness of each cofactor, NADPH and NADH, to mediate BaP metabolism. We found that both systems differ in catalysing the reactions activating and detoxifying BaP. Two BaP-derived DNA adducts were generated by the CYP1A1-Supersomes, both in the presence of NADPH and NADH, whereas NADPH but not NADH was able to support this reaction in the CYP1A1-Bactosomes. Seven BaP metabolites were found in Supersomes with NADPH or NADH, whereas NADPH but not NADH was able to generate five BaP metabolites in Bactosomes. Our study demonstrates different catalytic efficiencies of CYP1A1 expressed in prokaryotic and eukaryotic cells in BaP bioactivation indicating some limitations in the use of E. coli cells for such studies.
ABSTRACT: Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase and/or cytochrome b5 in Supersomes™ to oxidize this drug. We also evaluated the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate ellipticine oxidation in these enzyme systems. Using HPLC analysis we detected up to five ellipticine metabolites, which were formed by human hepatic microsomes and human CYP3A4 in the presence of NADPH or NADH. Among ellipticine metabolites, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine were formed by hepatic microsomes as the major metabolites, while 7-hydroxyellipticine and the ellipticine N2-oxide were the minor ones. Human CYP3A4 in Supersomes™ generated only three metabolic products, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine. Using the 32P-postlabeling method two ellipticine-derived DNA adducts were generated by microsomes and the CYP3A4-Supersome system, both in the presence of NADPH and NADH. These adducts were derived from the reaction of 13-hydroxy- and 12-hydroxyellipticine with deoxyguanosine in DNA. In the presence of NADPH or NADH, cytochrome b5 stimulated the CYP3A4-mediated oxidation of ellipticine, but the stimulation effect differed for individual ellipticine metabolites. This heme protein also stimulated the formation of both ellipticine-DNA adducts. The results demonstrate that cytochrome b5 plays a dual role in the CYP3A4-catalyzed oxidation of ellipticine: (1) cytochrome b5 mediates CYP3A4 catalytic activities by donating the first and second electron to this enzyme in its catalytic cycle, indicating that NADH:cytochrome b5 reductase can substitute NADPH-dependent POR in this enzymatic reaction and (2) cytochrome b5 can act as an allosteric modifier of the CYP3A4 oxygenase.
- Keywords
- Coenzymes, DNA, Enzymes, High pressure liquid chromatography,
- Publication type
- Journal Article MeSH