Most cited article - PubMed ID 28903234
Utilizing of Square Wave Voltammetry to Detect Flavonoids in the Presence of Human Urine
Dry matter, organic acids, ascorbic acid, minerals (nitrogen, phosphorus, potassium, calcium, magnesium, sodium) and polyphenolic profile of a number of non-traditional fruit species and their genotypes, namely blue honeysuckle (Lonicera spp.), Saskatoon berry (Amelanchier alnifolia), black mulberry (Morus nigra), Tomentosa cherry (Prunus tomentosa Thunb.) and jostaberry (Ribes nigrum x Grossularia uva-crispa) were investigated. The results showed that Lonicera genotypes displayed high levels of ascorbic acid and they were rich in minerals, with the cultivar ‘Amfora’ achieving the leading position in nitrogen, phosphorus and potassium content among all lesser known fruit species. Amelanchier cultivars represented a valuable source of ascorbic acid and calcium, ‘Tišňovský’ and ‘Smoky’ together with Morus nigra ‘Jugoslavska’ accumulated the highest level of examined polyphenolic compounds. Regular consumption of studied less common fruit species can bring health benefits so they can represent a high potential value for fruit growers and in addition they can be utilised as functional foods.
- MeSH
- Genotype MeSH
- Carboxylic Acids analysis isolation & purification MeSH
- Acids, Noncarboxylic analysis isolation & purification MeSH
- Lonicera chemistry MeSH
- Minerals analysis isolation & purification MeSH
- Morus chemistry MeSH
- Nutritive Value * MeSH
- Fruit chemistry MeSH
- Polyphenols analysis isolation & purification MeSH
- Ribes chemistry MeSH
- Rosaceae chemistry MeSH
- Plant Extracts analysis isolation & purification MeSH
- Prunus chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Carboxylic Acids MeSH
- Acids, Noncarboxylic MeSH
- Minerals MeSH
- Polyphenols MeSH
- Plant Extracts MeSH
Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.
- MeSH
- Algorithms MeSH
- Amino Acids chemistry MeSH
- Principal Component Analysis * MeSH
- Antioxidants chemistry MeSH
- Benzothiazoles chemistry MeSH
- Biphenyl Compounds chemistry MeSH
- Gene Pool MeSH
- Sulfonic Acids chemistry MeSH
- Fruit chemistry MeSH
- Picrates chemistry MeSH
- Polyphenols chemistry MeSH
- Plant Extracts chemistry MeSH
- Cluster Analysis MeSH
- Prunus chemistry MeSH
- Free Radicals chemistry MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1,1-diphenyl-2-picrylhydrazyl MeSH Browser
- 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid MeSH Browser
- Amino Acids MeSH
- Antioxidants MeSH
- Benzothiazoles MeSH
- Biphenyl Compounds MeSH
- Sulfonic Acids MeSH
- Picrates MeSH
- Polyphenols MeSH
- Plant Extracts MeSH
- Free Radicals MeSH
BACKGROUND: The aim of the present study was to investigate biochemical and oxidative stress responses to experimental F. tularensis infection in European brown hares, an important source of human tularemia infections. METHODS: For these purposes we compared the development of an array of biochemical parameters measured in blood plasma using standard procedures of dry chemistry as well as electrochemical devices following a subcutaneous infection with a wild Francisella tularensis subsp. holarctica strain (a single dose of 2.6 × 10⁹ CFU pro toto). RESULTS: Subcutaneous inoculation of a single dose with 2.6 × 10⁹ colony forming units of a wild F. tularensis strain pro toto resulted in the death of two out of five hares. Plasma chemistry profiles were examined on days 2 to 35 post-infection. When compared to controls, the total protein, urea, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased, while albumin, glucose and amylase were decreased. Both uric and ascorbic acids and glutathione dropped on day 2 and then increased significantly on days 6 to 12 and 6 to 14 post-inoculation, respectively. There was a two-fold increase in lipid peroxidation on days 4 to 8 post-inoculation. CONCLUSIONS: Contrary to all expectations, the present study demonstrates that the European brown hare shows relatively low susceptibility to tularemia. Therefore, the circumstances of tularemia in hares under natural conditions should be further studied.
- MeSH
- Time Factors MeSH
- Francisella tularensis * MeSH
- Thiobarbituric Acid Reactive Substances MeSH
- Oxidative Stress * MeSH
- Serum Albumin metabolism MeSH
- Tularemia metabolism pathology veterinary MeSH
- Hares * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Thiobarbituric Acid Reactive Substances MeSH
- Serum Albumin MeSH
The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods--DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox® and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5%). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R=0.97-0.99).
- MeSH
- Antioxidants analysis MeSH
- Time Factors MeSH
- Chromans analysis MeSH
- Gallic Acid analysis MeSH
- Automation, Laboratory instrumentation methods standards MeSH
- Reference Standards MeSH
- Spectrum Analysis instrumentation methods standards MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid MeSH Browser
- Antioxidants MeSH
- Chromans MeSH
- Gallic Acid MeSH
Research on natural compounds is increasingly focused on their effects on human health. In this study, we were interested in the evaluation of nutritional value expressed as content of total phenolic compounds and antioxidant capacity of new apricot (Prunus armeniaca L.) genotypes resistant against Plum pox virus (PPV) cultivated on Department of Fruit Growing of Mendel University in Brno. Fruits of twenty one apricot genotypes were collected at the onset of consumption ripeness. Antioxidant capacities of the genotypes were determined spectrometrically using DPPH• (1,1-diphenyl-2-picryl-hydrazyl free radicals) scavenging test, TEAC (Trolox Equivalent Antioxidant Capacity), and FRAP (Ferric Reducing Antioxidant Power)methods. The highest antioxidant capacities were determined in the genotypes LE-3228 and LE-2527, the lowest ones in the LE-985 and LE-994 genotypes. Moreover, close correlation (r = 0.964) was determined between the TEAC and DPPH assays. Based on the antioxidant capacity and total polyphenols content, a clump analysis dendrogram of the monitored apricot genotypes was constructed. In addition, we optimized high performance liquid chromatography coupled with tandem electrochemical and spectrometric detection and determined phenolic profile consisting of the following fifteen phenolic compounds: gallic acid, 4-aminobenzoic acid, chlorogenic acid, ferulic acid, caffeic acid, procatechin, salicylic acid, p-coumaric acid, the flavonols quercetin and quercitrin, the flavonol glycoside rutin, resveratrol, vanillin, and the isomers epicatechin, (-)- and (+)- catechin.
- MeSH
- Antioxidants analysis chemistry MeSH
- Chemistry Techniques, Analytical MeSH
- Phenols analysis MeSH
- Flavonoids analysis MeSH
- Genotype MeSH
- Fruit chemistry MeSH
- Oxidation-Reduction MeSH
- Polyphenols MeSH
- Free Radical Scavengers chemistry MeSH
- Prunus chemistry genetics MeSH
- Agriculture MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
- Phenols MeSH
- Flavonoids MeSH
- Polyphenols MeSH
- Free Radical Scavengers MeSH
The purpose of the present study was to employ two methods-square wave voltammetry (SWV) performed on screen printed sensors and ferric reducing antioxidant power (FRAP)-as suitable tools for the assay of low-molecular-weight antioxidants (LMWAs). LMWAs were assayed by both methods and the resulting data were statistically compared. Plasma samples from five Cinereous vultures accidentally intoxicated with lead were used to represent real biological matrices with different levels of LMWAs. Blood was collected from the birds prior to and one month after treatment with Ca-EDTA. SWV resulted in two peaks. The first peak, with the potential value of 466 ± 15 mV, was recognized as ascorbic and uric acids, while the second one (743 ± 30 mV) represented glutathione, tocopherol, ascorbic acid and in a minor effect by uric acid, too. Contribution of individual antioxidants was recognized by separate assays of LMWA standards. Correlation between peaks 1 and 2 as well as the sum of the two peaks and FRAP was analysed. While peak 1 and the sum of peaks were in close correlation to FRAP results (correlation coefficient of 0.97), the relation between peak 2 and FRAP may be expressed using a correlation coefficient of 0.64. The determination of thiols by the Ellman assay confirmed the accuracy of SWV. Levels of glutathione and other similar structures were stable in the chosen model and it may be concluded that SWV is appropriate for assay of LMWAs in plasma samples. The methods employed in the study were advantageous in minimal sample volume consumption and fast acquisition of results.
- Keywords
- Cinereous vultures, analytical methods, ascorbate, glutathione, lead intoxication, uric acid,
- Publication type
- Journal Article MeSH
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395-455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed.
- Keywords
- acetylcholinesterase, biosensor, cholinesterase, nerve agents, organophosphate, paraoxon, radiation,
- Publication type
- Journal Article MeSH
Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 - 65 - 125 - 170 - 250 - 500 nmol. The 250 nmol dose was found to be the LD(50). An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed.
- Keywords
- acetylcholinesterase, activity, blood, butyrylcholinesterase, cholinesterase, intoxication, paraoxon, pesticide,
- Publication type
- Journal Article MeSH
Neurodegenerative disorders (NDD) have become the common global health burden over the last several decades. According to World Health Organization (WHO), a staggering 30 million people will be affected by Alzheimer's disease in Europe and the USA by 2050. Effective therapies in this complex field considering the multitude of symptoms associated with NDD indications, have not been found yet. Based on the results of NDD related studies, prevention appears to be the promise alternative. Antioxidative and anti-inflammatory properties are hypothesized for natural phenolics, a group of plant secondary products that may positively impact neurodegenerative diseases. In these studies, phenolic-rich extracts from less common fruit species: Blue honeysuckle (Lonicera edulis, Turcz. ex. Freyn), Saskatoon berry (Amelanchier alnifolia Nutt.), and Chinese hawthorn (Crateagus pinnatifida Bunge) were obtained and analyzed to detect neuroprotective substances content and establish a potential therapeutic value. High performance liquid chromatography with electrochemical detection was optimized and further applied on analysis of the extracts of less common fruit species. It was observed that Chinese hawthorn and Blue honeysuckle extracts are potent source of neuroprotective phenolic antioxidants. In accordance the results, it appears that the fruit or formulated products may have the potential for the prevention of neurodegenerative diseases.
- MeSH
- Antioxidants analysis therapeutic use MeSH
- Crataegus chemistry MeSH
- Electrochemistry instrumentation MeSH
- 4-Aminobenzoic Acid analysis MeSH
- Gallic Acid analysis MeSH
- Lonicera chemistry MeSH
- Neurodegenerative Diseases drug therapy prevention & control MeSH
- Fruit chemistry MeSH
- Quercetin analysis MeSH
- Rosaceae chemistry MeSH
- Rutin analysis MeSH
- Chromatography, High Pressure Liquid instrumentation methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
- 4-Aminobenzoic Acid MeSH
- Gallic Acid MeSH
- Quercetin MeSH
- Rutin MeSH
Editorial note concerning the "Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology" special issue.
- Keywords
- Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology,
- Publication type
- Editorial MeSH