Most cited article - PubMed ID 29046681
An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions
N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
- Keywords
- N-Sulfoindole-3-acetic acid, Indole-3-acetic acid, Mass spectrometry, Metabolomics, Phytohormone, Sulfonated,
- MeSH
- Arabidopsis metabolism MeSH
- Indoleacetic Acids * metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Urtica dioica metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids * MeSH
- Plant Growth Regulators MeSH
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
- Keywords
- Acetylated amino acids, LC-MS/MS, acetylated biogenic amines, amino acids, biogenic amines, methylated amino acids, plant metabolism,
- MeSH
- Arabidopsis metabolism growth & development MeSH
- Chromatography, Liquid MeSH
- Nitrogen * metabolism MeSH
- Hordeum metabolism growth & development MeSH
- Liquid Chromatography-Mass Spectrometry MeSH
- Zea mays metabolism growth & development MeSH
- Polyamines metabolism analysis MeSH
- Plants metabolism MeSH
- Tandem Mass Spectrometry * methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen * MeSH
- Polyamines MeSH
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
- MeSH
- Arabidopsis * genetics growth & development physiology metabolism MeSH
- Photosystem II Protein Complex metabolism MeSH
- Loss of Function Mutation MeSH
- Polyamines metabolism MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Putrescine * metabolism MeSH
- Gene Expression Regulation, Plant * MeSH
- Salt Tolerance * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- Polyamines MeSH
- Arabidopsis Proteins * MeSH
- Putrescine * MeSH
Commercial interest in biostimulants as a tool for sustainable green economics and agriculture concepts is on a steep rise, being followed by increasing demand to employ efficient scientific methods to develop new products and understand their mechanisms of action. Biostimulants represent a highly diverse group of agents derived from various natural sources. Regardless of their nutrition content and composition, they are classified by their ability to improve crop performance through enhanced nutrient use efficiency, abiotic stress tolerance, and quality of crops. Numerous reports have described modern, non-invasive sensor-based phenotyping methods in plant research. This review focuses on applying phenotyping approaches in biostimulant research and development, and maps the evolution of interaction of these two intensively growing domains. How phenotyping served to identify new biostimulants, the description of their biological activity, and the mechanism/mode of action are summarized. Special attention is dedicated to the indoor high-throughput methods using model plants suitable for biostimulant screening and developmental pipelines, and high-precision approaches used to determine biostimulant activity. The need for a complex method of testing biostimulants as multicomponent products through integrating other -omic approaches followed by advanced statistical/mathematical tools is emphasized.
- Keywords
- -omics, High-throughput screening, mechanism of action, mode of action, plant biostimulants, plant breeding, plant phenotyping, sensors,
- MeSH
- Stress, Physiological * MeSH
- Research MeSH
- Crops, Agricultural * MeSH
- Agriculture methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
- Keywords
- Arctic, Nordic agriculture, climate change, crop phenotyping, functional phenomics, wild crops,
- MeSH
- Phenomics * MeSH
- Climate Change MeSH
- Seasons MeSH
- Crops, Agricultural genetics MeSH
- Agriculture * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Biostimulants became a hotspot in the fight to alleviate the consequences of abiotic stresses in crops. Due to their complex nature, it is challenging to obtain stable and reproducible final products and more challenging to define their mechanism of action. As an alternative, small molecule-based biostimulants, such as polyamines have promoted plant growth and improved stress tolerance. However, profound research about their mechanisms of action is still missing. To go further, we tested the effect of putrescine (Put) and its precursor ornithine (Orn) and degradation product 1,3-diaminopropane (DAP) at two different concentrations (0.1 and 1 mM) as a seed priming on in vitro Arabidopsis seedlings grown under optimal growth conditions, osmotic or salt stress. None of the primings affected the growth of the seedlings in optimal conditions but altered the metabolism of the plants. Under stress conditions, almost all primed plants grew better and improved their greenness. Only Orn-primed plants showed different plant responses. Interestingly, the metabolic analysis revealed the implication of the N- acetylornithine and Orn and polyamine conjugation as the leading player regulating growth and development under control and stress conditions. We corroborated polyamines as very powerful small molecule-based biostimulants to alleviate the adverse abiotic stress effects.
- Keywords
- abiotic stress, biostimulant, growth, plant phenotyping,
- Publication type
- Journal Article MeSH
Salt stress affects plant growth and productivity. In this study we determined the roles of eight genes involved in photosynthesis, using gene co-expression network analysis, under salt-stress conditions using Arabidopsis knockout mutants. The green area of the leaves was minimum in the at1g65230 mutant line. Rice LOC_Os01g68450, a homolog of at1g65230, was ectopically expressed in the at1g65230 mutant line to generate revertant lines. Under salt stress, the revertant lines exhibited significantly higher net photosynthesis rates than the at1g65230 mutant line. Moreover, the operating efficiency of photosystem II (PSII) and electron transport rate of the revertant lines were higher than those of the wild type and at1g65230 mutant line after 10 days of exposure to salt stress. After this period, the protein PsbD-the component of PSII-decreased in all lines tested without significant difference among them. However, the chlorophyll a and b, carotenoid, and anthocyanin contents of revertant lines were higher than those of the mutant line. Furthermore, lower maximum chlorophyll fluorescence was detected in the revertant lines. This suggests that LOC_Os01g68450 expression contributed to the salt tolerance phenotype by modifying the energy dissipation process and led to the ability to maintain photosynthesis under salt stress conditions.
- Keywords
- at1g65230 mutant line, electron transport rate, light-harvesting complex, phiPSII, photosynthetic pigment, rice, salt stress, stomatal conductance,
- Publication type
- Journal Article MeSH
The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.
Drought and salinity reduce seed germination, seedling emergence, and early seedling establishment, affect plant metabolism, and hence, reduce crop yield. Development of technologies that can increase plant tolerance of these challenging growth conditions is a major current interest among plant scientists and breeders. Seed priming has become established as one of the practical approaches that can alleviate the negative impact of many environmental stresses and improve the germination and overall performance of crops. Hormopriming using different plant growth regulators has been widely demonstrated as effective, but information about using cytokinins (CKs) as priming agents is limited to only a few studies using kinetin or 6-benzylaminopurine (BAP). Moreover, the mode of action of these compounds in improving seed and plant fitness through priming has not yet been studied. For many years, BAP has been one of the CKs most commonly applied exogenously to plants to delay senescence and reduce the impact of stress. However, rapid endogenous N 9-glucosylation of BAP can result in negative effects. This can be suppressed by hydroxylation of the benzyl ring or by appropriate N 9 purine substitution. Replacement of the 2' or 3' hydroxyl groups of a nucleoside with a fluorine atom has shown promising results in drug research and biochemistry as a means of enhancing biological activity and increasing chemical or metabolic stability. Here, we show that the application of this chemical modification in four new N 9-substituted CK derivatives with a fluorinated carbohydrate moiety improved the antisenescence properties of CKs. Besides, detailed phenotypical analysis of the growth and development of Arabidopsis plants primed with the new CK analogs over a broad concentration range and under various environmental conditions revealed that they improve growth regulation and antistress activity. Seed priming with, for example, 6-(3-hydroxybenzylamino)-2'-deoxy-2'-fluoro-9-(β)-D-arabinofuranosylpurine promoted plant growth under control conditions and alleviated the negative effects of the salt and osmotic stress. The mode of action of this hormopriming and its effect on plant metabolism were further analyzed through quantification of the endogenous levels of phytohormones such as CKs, auxins and abscisic acid, and the results are discussed.
- Keywords
- Arabidopsis, abiotic stress, antisenescence, cytokinin analogs, hormopriming, plant biostimulant characterization index,
- Publication type
- Journal Article MeSH
Drought stress limits plant growth and productivity. It triggers many responses by inducing changes in plant morphology and physiology. KDML105 rice is a key rice variety in Thailand and is normally grown in the northeastern part of the country. The chromosome segment substitution lines (CSSLs) were developed by transferring putative drought tolerance loci (QTLs) on chromosome 1, 3, 4, 8, or 9 into the KDML105 rice genome. CSSL104 is a drought-tolerant line with higher net photosynthesis and leaf water potential than KDML105 rice. The analysis of CSSL104 gene regulation identified the loci associated with these traits via gene co-expression network analysis. Most of the predicted genes are involved in the photosynthesis process. These genes are also conserved in Arabidopsis thaliana. Seven genes encoding chloroplast proteins were selected for further analysis through characterization of Arabidopsis tagged mutants. The response of these mutants to drought stress was analyzed daily for seven days after treatment by scoring green tissue areas via the PlantScreen™ XYZ system. Mutation of these genes affected green areas of the plant and stability index under drought stress, suggesting their involvement in drought tolerance.
- Keywords
- CSSLs, co-expression network, drought stress, ‘KDML105’ rice,
- MeSH
- Chromosomes, Plant genetics MeSH
- Adaptation, Physiological * MeSH
- Gene Regulatory Networks MeSH
- Quantitative Trait Loci * MeSH
- Droughts * MeSH
- Gene Expression Regulation, Plant * MeSH
- Plant Proteins genetics MeSH
- Oryza genetics growth & development MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plant Proteins MeSH