Nejvíce citovaný článek - PubMed ID 30048769
Phytohormones and polyamines regulate plant stress responses by altering GABA pathway
Plasmodiophora brassicae, a soil-borne biotroph, establishes galls as strong physiological sinks on Brassicaceae plants including Brassica napus and Arabidopsis thaliana. We compare transcriptional profiles of phloem dissected from leaf petioles and hypocotyls of healthy and infected B. napus plants. Our results highlight how pathogenesis accompanies phloem-mediated defence responses whilst exerting a strong influence on carbon-nitrogen (C-N) economy. We observe transcriptional changes indicating decreased aliphatic glucosinolate biosynthesis, fluctuating jasmonic acid responses, altered amino acid (AA) and nitrate transport, carbohydrate metabolism and modified cytokinin responses. Changes observed in phloem-dissected from upper versus lower plant organs point to phloem as a conduit in mediating C-N repartitioning, nutrition-related signalling and cytokinin dynamics over long distances during clubroot disease. To assess changes in physiology, we measured AAs, sugars and cytokinins, in phloem exudates from B. napus plants. Despite the decrease in most AA and sucrose levels, isopentyl-type cytokinins increased within infected plants. Furthermore, we employed Arabidopsis for visualising promoter activities of B. napus AA and N transporter orthologues and tested the impact of disrupted cytokinin transport during P. brassicae-induced gall formation using Atabcg14 mutants. Our physiological and microscopy studies show that the host developmental reaction to P. brassicae relies on cytokinin and is accompanied by intense nitrogen and carbon repartitioning. Overall, our work highlights the systemic aspects of host responses that should be taken into account when studying clubroot disease.
- Klíčová slova
- Brassica napus, Plasmodiophora brassicae, clubroot, laser dissection transcriptomics, oilseed rape, phloem,
- MeSH
- aminokyseliny metabolismus MeSH
- Arabidopsis * genetika fyziologie MeSH
- Brassica napus * genetika metabolismus fyziologie parazitologie MeSH
- cyklopentany metabolismus MeSH
- cytokininy metabolismus MeSH
- dusík metabolismus MeSH
- floém * metabolismus genetika MeSH
- glukosinoláty metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- nemoci rostlin * parazitologie genetika MeSH
- oxylipiny metabolismus MeSH
- Plasmodiophorida * fyziologie MeSH
- regulace genové exprese u rostlin * MeSH
- transkriptom MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- cyklopentany MeSH
- cytokininy MeSH
- dusík MeSH
- glukosinoláty MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
- uhlík MeSH
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
- Klíčová slova
- Acetylated amino acids, LC-MS/MS, acetylated biogenic amines, amino acids, biogenic amines, methylated amino acids, plant metabolism,
- MeSH
- Arabidopsis metabolismus růst a vývoj MeSH
- chromatografie kapalinová MeSH
- dusík * metabolismus MeSH
- ječmen (rod) metabolismus růst a vývoj MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- kukuřice setá metabolismus růst a vývoj MeSH
- polyaminy metabolismus analýza MeSH
- rostliny metabolismus MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- polyaminy MeSH
Biostimulants have become an asset for agriculture since they are a greener alternative to traditionally used plant protection products. Also, they have gained the farmers' acceptance due to their effect on enhancing the plant's natural defense system against abiotic stresses. Besides commercially available complex products, small molecule-based biostimulants are useful for industry and research. Among them, polyamines (PAs) are well-studied natural compounds that can elicit numerous positive responses in drought-stressed plants. However, the studies are merely focused on the vegetative development of the plant. Therefore, we aimed to evaluate how drenching with putrescine (Put) and spermidine (Spd) modified the maize production and the yield quality parameters. First, a dosage optimization was performed, and then the best PA concentrations were applied by drenching the maize plants grown under well-watered (WW) conditions or water deficit (WD). Different mechanisms of action were observed for Put and Spd regarding maize production, including when both PAs similarly improved the water balance of the plants. The application of Put enhanced the quality and quantity of the yield under WW and Spd under WD. Regarding the nutritional quality of the grains, both PAs increased the carbohydrates content, whereas the contribution to the protein content changed by the interaction between compound and growth conditions. The mineral content of the grains was also greatly affected by the water condition and the PA application, with the most relevant results observed when Spd was applied, ending with flour richer in Zn, Cu, and Ca minerals that are considered important for human health. We showed that the exogenous PA application could be a highly efficient biofortification approach. Our findings open a new exciting use to be studied deep in the biostimulant research.
- Klíčová slova
- Zea mays, drenching, mineral nutrition, polyamines, yield,
- Publikační typ
- časopisecké články MeSH
The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid β-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.
- Klíčová slova
- Vitis vinifera L., biostimulants, grapevine, growth stages, phenology, primary metabolism, water deficit,
- Publikační typ
- časopisecké články MeSH
Biostimulants became a hotspot in the fight to alleviate the consequences of abiotic stresses in crops. Due to their complex nature, it is challenging to obtain stable and reproducible final products and more challenging to define their mechanism of action. As an alternative, small molecule-based biostimulants, such as polyamines have promoted plant growth and improved stress tolerance. However, profound research about their mechanisms of action is still missing. To go further, we tested the effect of putrescine (Put) and its precursor ornithine (Orn) and degradation product 1,3-diaminopropane (DAP) at two different concentrations (0.1 and 1 mM) as a seed priming on in vitro Arabidopsis seedlings grown under optimal growth conditions, osmotic or salt stress. None of the primings affected the growth of the seedlings in optimal conditions but altered the metabolism of the plants. Under stress conditions, almost all primed plants grew better and improved their greenness. Only Orn-primed plants showed different plant responses. Interestingly, the metabolic analysis revealed the implication of the N- acetylornithine and Orn and polyamine conjugation as the leading player regulating growth and development under control and stress conditions. We corroborated polyamines as very powerful small molecule-based biostimulants to alleviate the adverse abiotic stress effects.
- Klíčová slova
- abiotic stress, biostimulant, growth, plant phenotyping,
- Publikační typ
- časopisecké články MeSH
Heat and drought events often occur concurrently as a consequence of climate change and have a severe impact on crop growth and yield. Besides, the accumulative increase in the atmospheric CO2 level is expected to be doubled by the end of this century. It is essential to understand the consequences of climate change combined with the CO2 levels on relevant crops such as wheat. This study evaluated the physiology and metabolite changes and grain yield in heat-sensitive (SF29) and heat-tolerant (LM20) wheat genotypes under individual heat stress or combined with drought applied during anthesis at ambient (aCO2) and elevated CO2 (eCO2) levels. Both genotypes enhanced similarly the WUE under combined stresses at eCO2. However, this increase was due to different stress responses, whereas eCO2 improved the tolerance in heat-sensitive SF29 by enhancing the gas exchange parameters, and the accumulation of compatible solutes included glucose, fructose, β-alanine, and GABA to keep water balance; the heat-tolerant LM20 improved the accumulation of phosphate and sulfate and reduced the lysine metabolism and other metabolites including N-acetylornithine. These changes did not help the plants to improve the final yield under combined stresses at eCO2. Under non-stress conditions, eCO2 improved the yield of both genotypes. However, the response differed among genotypes, most probably as a consequence of the eCO2-induced changes in glucose and fructose at anthesis. Whereas the less-productive genotype LM20 reduced the glucose and fructose and increased the grain dimension as the effect of the eCO2 application, the most productive genotype SF29 increased the two carbohydrate contents and ended with higher weight in the spikes. Altogether, these findings showed that the eCO2 improves the tolerance to combined heat and drought stress but not the yield in spring wheat under stress conditions through different mechanisms. However, under non-stress conditions, it could improve mainly the yield to the less-productive genotypes. Altogether, the results demonstrated that more studies focused on the combination of abiotic stress are needed to understand better the spring wheat responses that help the identification of genotypes more resilient and productive under these conditions for future climate conditions.
- Klíčová slova
- chlorophyll fluorescence, elevated CO2, gas exchange, grain yield, heat stress, targeted metabolomic analysis, wheat,
- Publikační typ
- časopisecké články MeSH
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
- Klíčová slova
- drought tolerance, mycorrhizae, plant physiology, symbiosis, water deficit,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants communicate with microorganisms by exchanging chemical signals throughout the phytosphere. Such interactions are important not only for plant productivity and fitness, but also for terrestrial ecosystem functioning. It is known that beneficial microorganisms emit diffusible substances including volatile organic compounds (VOCs) that promote growth. Consistently, soil application of cell-free culture filtrates (CF) of beneficial soil and plant-associated microorganisms enhances plant growth and yield. However, how this treatment acts in plants and whether it alters the resident soil microbiota, are largely unknown. In this work we characterized the responses of pepper (Capsicum annuum L.) plants cultured under both greenhouse and open field conditions and of soil microbiota to soil application of CFs of beneficial and phytopathogenic fungi. To evaluate the contribution of VOCs occurring in the CFs to these responses, we characterized the responses of plants and of soil microbiota to application of distillates (DE) of the fungal CFs. CFs and their respective DEs contained the same potentially biogenic VOCs, and application of these extracts enhanced root growth and fruit yield, and altered the nutritional characteristics of fruits. High-throughput amplicon sequencing of bacterial 16S and fungal ITS rRNA genes of the soil microbiota revealed that the CF and DE treatments altered the microbial community compositions, and led to strong enrichment of the populations of the same beneficial bacterial and fungal taxa. Our findings show that CFs of both beneficial and phytopathogenic fungi can be used as biostimulants, and provide evidence that VOCs occurring in the fungal CFs act as mediators of the plants' responses to soil application of fungal CFs through stimulation of the beneficial soil microbiota.
- Klíčová slova
- biostimulant, fruit yield, fungal phytopathogen, plant growth promoting microorganism, plant-microbe interaction, soil microbiota, volatile organic compounds,
- Publikační typ
- časopisecké články MeSH
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.
- Klíčová slova
- Pisum sativum, abiotic stress, developmental plasticity, drought, oleic acid, phloem,
- MeSH
- biologický transport MeSH
- dusík metabolismus MeSH
- floém anatomie a histologie genetika fyziologie MeSH
- fyziologická adaptace MeSH
- fyziologický stres MeSH
- genotyp MeSH
- hrách setý anatomie a histologie genetika fyziologie MeSH
- kyselina olejová metabolismus MeSH
- listy rostlin anatomie a histologie genetika fyziologie MeSH
- období sucha MeSH
- rostlinné exsudáty MeSH
- uhlík metabolismus MeSH
- voda fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- kyselina olejová MeSH
- rostlinné exsudáty MeSH
- uhlík MeSH
- voda MeSH
Plant phenotyping platforms offer automated, fast scoring of traits that simplify the selection of varieties that are more competitive under stress conditions. However, indoor phenotyping methods are frequently based on the analysis of plant growth in individual pots. We present a reproducible indoor phenotyping method for screening young barley populations under water stress conditions and after subsequent rewatering. The method is based on a simple read-out of data using RGB imaging, projected canopy height, as a useful feature for indirectly following the kinetics of growth and water loss in a population of barley. A total of 47 variables including 15 traits and 32 biochemical metabolites measured (morphometric parameters, chlorophyll fluorescence imaging, quantification of stress-related metabolites; amino acids and polyamines, and enzymatic activities) were used to validate the method. The study allowed the identification of metabolites related to water stress response and recovery. Specifically, we found that cadaverine (Cad), 1,3-aminopropane (DAP), tryptamine (Tryp), and tyramine (Tyra) were the major contributors to the water stress response, whereas Cad, DAP, and Tyra, but not Tryp, remained at higher levels in the stressed plants even after rewatering. In this work, we designed, optimized and validated a non-invasive image-based method for automated screening of potential water stress tolerance genotypes in barley populations. We demonstrated the applicability of the method using transgenic barley lines with different sensitivity to drought stress showing that combining canopy height and the metabolite profile we can discriminate tolerant from sensitive genotypes. We showed that the projected canopy height a sensitive trait that truly reflects other invasively studied morphological, physiological, and metabolic traits and that our presented methodological setup can be easily applicable for large-scale screenings in low-cost systems equipped with a simple RGB camera. We believe that our approach will contribute to accelerate the study and understanding of the plant water stress response and recovery capacity in crops, such as barley.
- Klíčová slova
- Hordeum vulgare, amino acids, antioxidative enzymes, blue (RGB) imaging, canopy height, fluorescence, green, indoor phenotyping, polyamines, red,
- Publikační typ
- časopisecké články MeSH