Nejvíce citovaný článek - PubMed ID 29773078
The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
- Klíčová slova
- Apis mellifera, Varroa destructor, Community assembly, Microbiomes, Networks,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- Varroidae * mikrobiologie MeSH
- včely mikrobiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
- Klíčová slova
- Abundance, OTUs, Preserved environments, Rare bacteria, Taxonomy,
- MeSH
- Actinobacteria * chemie klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- metagenom MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S analýza MeSH
- taxonomické DNA čárové kódování MeSH
- veřejné parky MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
- Názvy látek
- půda MeSH
- RNA ribozomální 16S MeSH
RATIONALE: Severe alcohol-associated hepatitis (SAH) is the most critical, acute, inflammatory phenotype within the alcohol-associated liver disease (ALD) spectrum, characterized by high 30- and 90-day mortality. Since several decades, corticosteroids (CS) are the only approved pharmacotherapy offering highly limited survival benefits. Contextually, there is an evident demand for 3PM innovation in the area meeting patients' needs and improving individual outcomes. Fecal microbiota transplantation (FMT) has emerged as one of the new potential therapeutic options. In this study, we aimed to address the crucial 3PM domains in order to assess (i) the impact of FMT on mortality in SAH patients beyond CS, (ii) to identify factors associated with the outcome to be improved (iii) the prediction of futility, (iv) prevention of suboptimal individual outcomes linked to increased mortality, and (v) personalized allocation of therapy. METHODS: We conducted a prospective study (NCT04758806) in adult patients with SAH who were non-responders (NR) to or non-eligible (NE) for CS between January 2018 and August 2022. The intervention consisted of five 100 ml of FMT, prepared from 30 g stool from an unrelated healthy donor and frozen at - 80 °C, administered daily to the upper gastrointestinal (GI) tract. We evaluated the impact of FMT on 30- and 90-day mortality which we compared to the control group selected by the propensity score matching and treated by the standard of care; the control group was derived from the RH7 registry of patients hospitalized at the liver unit (NCT04767945). We have also scrutinized the FMT outcome against established and potential prognostic factors for SAH - such as the model for end-stage liver disease (MELD), Maddrey Discriminant Function (MDF), acute-on-chronic liver failure (ACLF), Liver Frailty Index (LFI), hepatic venous-portal pressure gradient (HVPG) and Alcoholic Hepatitis Histologic Score (AHHS) - to see if the 3PM method assigns them a new dimension in predicting response to therapy, prevention of suboptimal individual outcomes, and personalized patient management. RESULTS: We enrolled 44 patients with SAH (NR or NE) on an intention-to-treat basis; we analyzed 33 patients per protocol for associated factors (after an additional 11 being excluded for receiving less than 5 doses of FMT), and 31 patients by propensity score matching for corresponding individual outcomes, respectively. The mean age was 49.6 years, 11 patients (33.3%) were females. The median MELD score was 29, and ACLF of any degree had 27 patients (81.8%). FMT improved 30-day mortality (p = 0.0204) and non-significantly improved 90-day mortality (p = 0.4386). Univariate analysis identified MELD ≥ 30, MDF ≥ 90, and ACLF grade > 1 as significant predictors of 30-day mortality, (p = 0.031; p = 0.014; p = 0.034). Survival was not associated with baseline LFI, HVPG, or AHHS. CONCLUSIONS AND RECOMMENDATIONS IN THE FRAMEWORK OF 3PM: In the most difficult-to-treat sub-cohort of patients with SAH (i.e., NR/NE), FMT improved 30-day mortality. Factors associated with benefit included MELD ≤ 30, MDF ≤ 90, and ACLF < 2. These results support the potential of gut microbiome as a therapeutic target in the context of 3PM research and vice versa - to use 3PM methodology as the expedient unifying template for microbiome research. The results allow for immediate impact on the innovative concepts of (i) personalized phenotyping and stratification of the disease for the clinical research and practice, (ii) multilevel predictive diagnosis related to personalized/precise treatment allocation including evidence-based (ii) prevention of futile and sub-optimally effective therapy, as well as (iii) targeted prevention of poor individual outcomes in patients with SAH. Moreover, our results add to the existing evidence with the potential to generate new research along the SAH's pathogenetic pathways such as diverse individual susceptibility to alcohol toxicity, host-specific mitochondrial function and systemic inflammation, and the role of gut dysbiosis thereof. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-024-00381-5.
- Klíčová slova
- Alcohol toxicity, Cost-efficacy, Dysbiosis, Fecal microbiota transplantation, Gut microbiota, Health policy, Individualized patient profile, Mitochondrial health, Multi-level diagnostics, Patient stratification, Phenotyping, Predictive preventive personalized medicine (PPPM / 3PM), Severe alcohol-associated hepatitis, Survival, Systemic inflammation, Tailored therapy,
- Publikační typ
- časopisecké články MeSH
The Western honey bee (Apis mellifera) is a vital agricultural pollinator whose populations are threatened by the parasitic mite Varroa destructor and associated pathogens. While the impact of Paenibacillus species on honey bees, particularly Paenibacillus larvae causing American foulbrood, is documented, their effect on the microbiota of Varroa mites remains unclear. This study aimed to investigate the influence of Paenibacillus sp. on the bacterial communities of Varroa mites and adult honey bees. We hypothesized that Paenibacillus sp. would significantly alter the microbiota of Varroa mites but have minimal effect on that of adult honey bees. Utilizing 16S rRNA sequencing data from a previous study, we reanalyzed samples categorized into four groups based on Paenibacillus sp. infection load: highly infected and lowly infected honey bees (A. mellifera) and mites (V. destructor). Infection status was determined by Paenibacillus sp. read counts, with more than three reads indicating high infection. Microbial diversity was assessed using alpha and beta diversity metrics. Co-occurrence networks were constructed to visualize bacterial community assemblies, and network robustness was evaluated through node addition and removal tests. Keystone taxa were identified based on eigenvector centrality and relative abundance. Highly infected Varroa mites exhibited a significant reduction in alpha diversity and a markedly different bacterial community composition compared to lowly infected mites (p < 0.05). Their bacterial co-occurrence networks showed decreased connectivity and robustness, indicating a disruptive effect of Paenibacillus sp. In contrast, adult honey bees displayed no significant differences in alpha diversity or network structure between highly and lowly infected groups (p > 0.05), suggesting a resilient microbiota. Keystone taxa analysis revealed fewer central species in highly infected Varroa mites, potentially impacting network stability. High Paenibacillus sp. infection is associated with significant alterations in the microbiota of Varroa mites, disrupting bacterial communities and potentially affecting mite physiology. The microbiota of adult honey bees appears more robust against Paenibacillus sp. influence. These findings enhance our understanding of the complex interactions within the "honey bee-mite-microorganism" system and may inform future strategies for managing Varroa mite infestations and associated pathogens.
- Klíčová slova
- Apis mellifera, Microbial networks, Microbiota analysis, Paenibacillus sp., Varroa destructor,
- Publikační typ
- časopisecké články MeSH
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this study, we tested whether strains from genera Bacteroides, Megamonas, or Megasphaera can increase chicken resistance to Salmonella and Campylobacter jejuni when defined microbial mixtures consisting of these bacterial genera are administered. Mixtures consisting of different species and strains from the above-mentioned genera efficiently colonised the chicken caecum and increased chicken resistance to Salmonella by a factor of 50. The tested mixtures were even more effective in protecting chickens from Salmonella in a seeder model of infection (3-5 log reduction). The tested mixtures partially protected chickens from C. jejuni infection, though the effect was lower than that against Salmonella. The obtained data represent a first step for the development of a new type of probiotics for poultry.
- Klíčová slova
- Bacteroides, Megamonas, Megasphaera, caecum, chicken, microbiota, probiotics,
- Publikační typ
- časopisecké články MeSH
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- imunoglobuliny * MeSH
- kur domácí * mikrobiologie imunologie MeSH
- RNA ribozomální 16S * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobuliny * MeSH
- RNA ribozomální 16S * MeSH
BACKGROUND: Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. RESULTS: Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. CONCLUSION: Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
- Klíčová slova
- Ips acuminatus, Ips sexdentatus, amplicon sequence variances (ASVs), core bacteriome, holobiont, microhabitat,
- Publikační typ
- časopisecké články MeSH
Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
- Klíčová slova
- Ectomycorrhizal mushroom, Edible mushroom, Host, Koutake,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- mikrobiota MeSH
- plodnice hub * růst a vývoj MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S * MeSH
The rhizosphere is the hotspot for microbial enzyme activities and contributes to carbon cycling. Precipitation is an important component of global climate change that can profoundly alter belowground microbial communities. However, the impact of precipitation on conifer rhizospheric microbial populations has not been investigated in detail. In the present study, using high-throughput amplicon sequencing, we investigated the impact of precipitation on the rhizospheric soil microbial communities in two Norway Spruce clonal seed orchards, Lipová Lhota (L-site) and Prenet (P-site). P-site has received nearly double the precipitation than L-site for the last three decades. P-site documented higher soil water content with a significantly higher abundance of Aluminium (Al), Iron (Fe), Phosphorous (P), and Sulphur (S) than L-site. Rhizospheric soil metabolite profiling revealed an increased abundance of acids, carbohydrates, fatty acids, and alcohols in P-site. There was variance in the relative abundance of distinct microbiomes between the sites. A higher abundance of Proteobacteria, Acidobacteriota, Ascomycota, and Mortiellomycota was observed in P-site receiving high precipitation, while Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadota, and Basidiomycota were prevalent in L-site. The higher clustering coefficient of the microbial network in P-site suggested that the microbial community structure is highly interconnected and tends to cluster closely. The current study unveils the impact of precipitation variations on the spruce rhizospheric microbial association and opens new avenues for understanding the impact of global change on conifer rizospheric microbial associations.
- Klíčová slova
- FUNGuild, Norway spruce, PICRUSt2, amplicon sequencing, microbial communities, network analysis, precipitation, rhizosphere, seed orchards, soil metabolites,
- MeSH
- Bacteria genetika klasifikace metabolismus MeSH
- déšť MeSH
- klimatické změny MeSH
- mikrobiota * genetika MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- semena rostlinná růst a vývoj mikrobiologie MeSH
- smrk * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.
- Klíčová slova
- Bentonite buffer, Deep geological repository, Elevated temperature, Extremophiles, Gamma radiation, Microbial limiting factors, Radioactive waste disposal,
- MeSH
- Bacteria * klasifikace účinky záření genetika růst a vývoj MeSH
- bentonit * chemie MeSH
- mikrobiální viabilita * účinky záření MeSH
- půdní mikrobiologie MeSH
- radioaktivní odpad analýza MeSH
- vysoká teplota * MeSH
- záření gama * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bentonit * MeSH
- radioaktivní odpad MeSH