Most cited article - PubMed ID 30747251
The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin
Ticks are important ectoparasites and vectors of a variety of pathogens in both animals and humans, and their increasing global distribution poses a growing health risk. Unlike other blood-feeding vectors, ticks feed for an extended period at each life stage and rely exclusively on blood for development and reproduction. Blood digestion in ticks is mediated by a complex multienzyme network within the endolysosomal system of the midgut (MG) epithelial cells. Previous studies have focused largely on protein digestion during the slow feeding phase. However, the processing of the blood meal after the mating-induced rapid engorgement ("big sip") remains unclear, although the rapid turnover of proteins from host blood proteins into yolk proteins in fully fed females is a crucial step for tick reproduction. In this study, we performed a label-free quantitative proteomic analysis of MG tissue extracts and MG contents of the hard tick Ixodes ricinus to characterize proteases and protease inhibitors expressed during selected timepoints of female feeding and off-host digestion. In addition, we analyzed the distribution of digestive enzymes by activity profiling in MG extracts and contents with specific diagnostic substrates. Our results show that the multienzyme network, mainly based on aspartic acid and cysteine cathepsins and complemented by specific types of serine proteases and metalloproteases, is involved in the intracellular and probably also in the luminal digestion of blood meal proteins in fully engorged female ticks. We also detected different types of protease inhibitors and proposed their regulatory role in controlling both endogenous (tick-derived) and host protease activities in the MG tissue and luminal contents storing ingested blood. These results provide comprehensive insights into the physiology of the tick MG and offer new opportunities for the development of future control strategies against ticks and tick-borne diseases.
- Keywords
- adult Ixodes ricinus, label-free proteomics, midgut proteome, proteolytic system, tick physiology,
- MeSH
- Ixodes * metabolism physiology enzymology MeSH
- Peptide Hydrolases metabolism MeSH
- Arthropod Proteins * metabolism MeSH
- Proteome * metabolism MeSH
- Proteomics * methods MeSH
- Feeding Behavior MeSH
- Digestion * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Peptide Hydrolases MeSH
- Arthropod Proteins * MeSH
- Proteome * MeSH
INTRODUCTION: The Neotropical tick Amblyomma sculptum is the primary vector of Rickettsia rickettsii, the causative agent of Brazilian spotted fever, a disease associated with high fatality rates. Tick saliva, a complex mixture of bioactive molecules essential for successful blood feeding, facilitates pathogen transmission and modulates host immune responses. A comprehensive evaluation of the salivary gland transcriptome database reveals that protease inhibitors are abundantly expressed molecules in tick saliva during feeding. Thus, this study aims to describe and characterize the most expressed member of the cystatin family identified in Amblyomma sculptum salivary transcriptome, named Amblyostatin-1. METHODS: Bioinformatic tools were employed for in silico analysis of the Amblyostatin-1 sequence and structure. A recombinant version of Amblyostatin-1 was expressed in an Escherichia coli system, evaluated against a panel of cysteine proteases in biochemical assays, and used to generate antibodies in immunized mice. The biological activities of Amblyostatin-1 were assessed by its effects on dendritic cell maturation in vitro and in a carrageenan-induced inflammation model in vivo. RESULTS: Based on its sequence and predicted three-dimensional structure, Amblyostatin-1 is classified as an I25B cystatin, and its recombinant form selectively inhibits cathepsins L, C, and S at different rates, with a low nanomolar Ki value of 0.697 ± 0.22 nM against cathepsin L. Regarding its biological activities, recombinant Amblyostatin-1 partially affects LPS-induced dendritic cell maturation by downmodulating the costimulatory molecules CD80 and CD86 at higher micromolar concentrations (3 µM) while promoting IL-10 production at nanomolar concentrations (100 nM). The apparent lack of Amblyostatin-1-specific antibody responses in immunized mice suggests an impairment of antigen processing and presentation in vivo. Furthermore, in a carrageenan-induced inflammation model, Amblyostatin-1 decreased edema formation and neutrophil infiltration into the skin without affecting other myeloid cells. DISCUSSION: These findings establish Amblyostatin-1 as a novel salivary cystatin with immunomodulatory and anti-inflammatory properties, highlighting its potential as an immunobiological agent.
- Keywords
- Amblyomma sculptum, Amblyostatin-1, immunomodulation, inflammation, tick saliva, tick-host interaction,
- MeSH
- Amblyomma * immunology metabolism MeSH
- Anti-Inflammatory Agents * pharmacology MeSH
- Arachnid Vectors * immunology MeSH
- Cystatins * immunology MeSH
- Dendritic Cells immunology drug effects MeSH
- Mice MeSH
- Arthropod Proteins * genetics immunology MeSH
- Salivary Cystatins * genetics immunology pharmacology chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Inflammatory Agents * MeSH
- Cystatins * MeSH
- Arthropod Proteins * MeSH
- Salivary Cystatins * MeSH
BACKGROUND: Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS: Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS: The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
- Keywords
- Comparative genomics, Duplication, Hematophagy, Parasite, Retroposition,
- MeSH
- Biological Evolution * MeSH
- Phylogeny MeSH
- Genome * MeSH
- Ixodes * genetics classification MeSH
- Evolution, Molecular * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection. Mice were intradermally infected by TBEV with or without Iristatin and the viral multiplication was determined in skin and brain tissues by RT-PCR two and 5 days after infection. The viral RNA was detected in both intervals in skin and increased by time. The application of Iristatin caused a reduction in viral RNA in skin but not in the brain of infected mice 5 days post-infection. Moreover, anti-viral effect of Iristatin on skin was accompanied by a significant decline of interferon-stimulated gene 15 gene expression. The effect of Iristatin on TBEV replication was tested also in vitro in primary macrophages and dendritic cells; however, no changes were observed suggesting no direct interference of Iristatin with virus replication. Still, the Iristatin caused a suppression of Erk1/2 phosphorylation in TBEV-infected dendritic cells and had the anti-apoptotic effect. This is the first report showing that a tick cystatin decreases the viral RNA in the host skin, likely indirectly through creating skin environment that is less supportive for TBEV replication. Assuming, that viral RNA reflects the amount of infectious virus, decline of TBEV in host skin could influence the tick biology or virus transmission during cofeeding.
- Keywords
- Cystatin, Flavivirus, Tick, Tick-borne encephalitis virus, Virus replication,
- MeSH
- Antiviral Agents * MeSH
- Cystatins * MeSH
- Dendritic Cells virology MeSH
- Ixodes * chemistry MeSH
- Encephalitis, Tick-Borne * virology MeSH
- Skin * virology MeSH
- Macrophages virology MeSH
- Brain virology MeSH
- Mice MeSH
- Virus Replication * drug effects MeSH
- RNA, Viral analysis MeSH
- Salivary Cystatins * pharmacology MeSH
- Encephalitis Viruses, Tick-Borne * drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents * MeSH
- Cystatins * MeSH
- RNA, Viral MeSH
- Salivary Cystatins * MeSH
Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.
- Keywords
- autoimmune disease, immune responses, protease inhibitors, psoriasis, tick,
- MeSH
- Dermatitis * MeSH
- Endopeptidases MeSH
- Cysteine Proteinase Inhibitors MeSH
- Protease Inhibitors MeSH
- Humans MeSH
- Mannans MeSH
- Immunity, Innate MeSH
- Peptide Hydrolases MeSH
- Psoriasis * chemically induced drug therapy MeSH
- Inflammation drug therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endopeptidases MeSH
- Cysteine Proteinase Inhibitors MeSH
- Protease Inhibitors MeSH
- Mannans MeSH
- Peptide Hydrolases MeSH
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
- Keywords
- cathepsin, cysteine protease, parasite, protease inhibitor, protein structure, saliva, thyropin, tick,
- MeSH
- Cysteine MeSH
- Glycosaminoglycans MeSH
- Cathepsins metabolism MeSH
- Ixodes * metabolism MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Saliva * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cysteine MeSH
- Glycosaminoglycans MeSH
- Cathepsins MeSH
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.
- Keywords
- Borrelia, Ixodes, antimicrobial peptides, label-free quantification, lipid metabolism, midgut, protease inhibitors, proteases, proteome, ticks,
- MeSH
- Ixodes * parasitology MeSH
- Proteome MeSH
- Proteomics MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteome MeSH
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
- Keywords
- Cystatins, Host–parasite interactions, Ixodes ricinus, Protease inhibition, Protein structure, Tick saliva,
- MeSH
- Cystatins * pharmacology MeSH
- Cysteine metabolism MeSH
- Endopeptidases metabolism MeSH
- Cathepsins metabolism MeSH
- Ixodes * chemistry MeSH
- Vertebrates MeSH
- Peptide Hydrolases metabolism MeSH
- Salivary Cystatins chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cystatins * MeSH
- Cysteine MeSH
- Endopeptidases MeSH
- Cathepsins MeSH
- Peptide Hydrolases MeSH
- Salivary Cystatins MeSH
Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.
- Keywords
- cystatin, cysteine cathepsin, helminth parasite, protease inhibitor, protein evolution, protein structure, stefin,
- MeSH
- Cystatins * genetics chemistry MeSH
- Disulfides MeSH
- Fasciola hepatica * genetics MeSH
- Phylogeny MeSH
- Helminth Proteins chemistry genetics MeSH
- Amino Acid Sequence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cystatins * MeSH
- Disulfides MeSH
- Helminth Proteins MeSH
Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.
- Keywords
- Ixodes ricinus, blood coagulation, crystal structure, parasite, saliva, serpin, tick,
- MeSH
- Complement Activation drug effects immunology physiology MeSH
- Erythrocytes metabolism MeSH
- Gene Expression genetics MeSH
- Blood Coagulation drug effects physiology MeSH
- Ixodes enzymology genetics metabolism MeSH
- Complement System Proteins metabolism MeSH
- Lyme Disease MeSH
- Nymph MeSH
- Arthropod Proteins metabolism MeSH
- Gene Expression Regulation genetics MeSH
- Serpins metabolism ultrastructure MeSH
- Salivary Glands metabolism MeSH
- Saliva chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Complement System Proteins MeSH
- Arthropod Proteins MeSH
- Serpins MeSH