Nejvíce citovaný článek - PubMed ID 30790509
Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines
Iron oxide nanoparticles (IONPs) are being actively researched in various biomedical applications, particularly as magnetic resonance imaging (MRI) contrast agents for diagnosing various liver pathologies like nonalcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cirrhosis. Emerging evidence suggests that IONPs may exacerbate hepatic steatosis and liver injury in susceptible livers such as those with nonalcoholic fatty liver disease. However, our understanding of how IONPs may affect steatotic cells at the sub-cellular level is still fragmented. Generally, there is a lack of studies identifying the molecular mechanisms of potential toxic and/or adverse effects of IONPs on "non-heathy" in vitro models. In this study, we demonstrate that IONPs, at a dose that does not cause general toxicity in hepatic cells (Alexander and HepG2), induce significant toxicity in steatotic cells (cells loaded with non-toxic doses of palmitic acid). Mechanistically, co-treatment with PA and IONPs resulted in endoplasmic reticulum (ER) stress, accompanied by the release of cathepsin B from lysosomes to the cytosol. The release of cathepsin B, along with ER stress, led to the activation of apoptotic cell death. Our results suggest that it is necessary to consider the interaction between IONPs and the liver, especially in susceptible livers. This study provides important basic knowledge for the future optimization of IONPs as MRI contrast agents for various biomedical applications.
- Publikační typ
- časopisecké články MeSH
It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.
- Klíčová slova
- cancer, cell plasticity, cytoskeleton, engineered cell microenvironments, extracellular matrix, mechanical forces, mitochondria,
- MeSH
- kolagen MeSH
- lidé MeSH
- mitochondriální dynamika MeSH
- nádorové mikroprostředí * MeSH
- nádory jater * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen MeSH
DNA nanostructures (DNs) can be designed in a controlled and programmable manner, and these structures are increasingly used in a variety of biomedical applications, such as the delivery of therapeutic agents. When exposed to biological liquids, most nanomaterials become covered by a protein corona, which in turn modulates their cellular uptake and the biological response they elicit. However, the interplay between living cells and designed DNs are still not well established. Namely, there are very limited studies that assess protein corona impact on DN biological activity. Here, we analyzed the uptake of functionalized DNs in three distinct hepatic cell lines. Our analysis indicates that cellular uptake is linearly dependent on the cell size. Further, we show that the protein corona determines the endolysosomal vesicle escape efficiency of DNs coated with an endosome escape peptide. Our study offers an important basis for future optimization of DNs as delivery systems for various biomedical applications.
- Klíčová slova
- DNA nanotechnology, bionano interactions, cellular uptake, endolysosomal escape, nanotechnology, protein corona,
- MeSH
- adsorpce MeSH
- DNA chemie metabolismus MeSH
- endozomy metabolismus MeSH
- kationické antimikrobiální peptidy chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- nádorové buněčné linie MeSH
- nanostruktury chemie MeSH
- proteinová korona chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aurein 1.2 peptide MeSH Prohlížeč
- DNA MeSH
- kationické antimikrobiální peptidy MeSH
- proteinová korona MeSH
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.
- Klíčová slova
- IFNLR1, IL10R2, interferon stimulated genes, knockout, transcriptome,
- MeSH
- buněčné linie MeSH
- buňky Hep G2 MeSH
- exprese genu MeSH
- genový knockout MeSH
- hepatocyty imunologie metabolismus MeSH
- interferonové regulační faktory genetika metabolismus MeSH
- interferony nedostatek genetika metabolismus MeSH
- interleukiny nedostatek genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- receptor interleukinu-10 - beta-podjednotka nedostatek genetika metabolismus MeSH
- receptory interferonů nedostatek genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- signální transdukce MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- IFNL4 protein, human MeSH Prohlížeč
- IFNLR1 protein, human MeSH Prohlížeč
- IL10RB protein, human MeSH Prohlížeč
- interferon-lambda, human MeSH Prohlížeč
- interferonové regulační faktory MeSH
- interferony MeSH
- interleukiny MeSH
- messenger RNA MeSH
- receptor interleukinu-10 - beta-podjednotka MeSH
- receptory interferonů MeSH
- rekombinantní proteiny MeSH
Recent studies undoubtedly show that the mammalian target of rapamycin (mTOR) and the Hippo-Yes-associated protein 1 (YAP) pathways are important mediators of mechanical cues. The crosstalk between these pathways as well as de-regulation of their signaling has been implicated in multiple tumor types, including liver tumors. Additionally, physical cues from 3D microenvironments have been identified to alter gene expression and differentiation of different cell lineages. However, it remains incompletely understood how physical constraints originated in 3D cultures affect cell plasticity and what the key mediators are of such process. In this work, we use collagen scaffolds as a model of a soft 3D microenvironment to alter cellular size and study the mechanotransduction that regulates that process. We show that the YAP-mTOR axis is a downstream effector of 3D cellular culture-driven mechanotransduction. Indeed, we found that cell mechanics, dictated by the physical constraints of 3D collagen scaffolds, profoundly affect cellular proliferation in a YAP-mTOR-mediated manner. Functionally, the YAP-mTOR connection is key to mediate cell plasticity in hepatic tumor cell lines. These findings expand the role of YAP-mTOR-driven mechanotransduction to the control hepatic tumor cellular responses under physical constraints in 3D cultures. We suggest a tentative mechanism, which coordinates signaling rewiring with cytoplasmic restructuring during cell growth in 3D microenvironments.
- Klíčová slova
- 3D cultures, YAP, autophagy, cell plasticity, cytoskeleton, mTOR, mechanotransduction,
- Publikační typ
- časopisecké články MeSH
The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.
- Klíčová slova
- cell signaling, cytotoxicity, immunomodulation, non-thermal plasma,
- MeSH
- buněčná imunita účinky léků MeSH
- lidé MeSH
- plazmové plyny farmakologie MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- plazmové plyny MeSH
Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe3O4-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r2 relaxivity (166.5 mM-1·s-1 and 99.5 mM-1·s-1 in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T2 contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/gFe) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.
- Klíčová slova
- MRI contrast agent, liver cancer, magnetic-plasmonic nanoparticles, nano-heterostructures, theranostic,
- Publikační typ
- časopisecké články MeSH
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
- Klíčová slova
- antifouling polymer brushes, cell mechanotransduction, cell signaling, functional biointerfaces, surface modification, zwitterionic material,
- MeSH
- akrylamidy chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- bioznečištění prevence a kontrola MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- protoonkogenní proteiny c-yes metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- biokompatibilní potahované materiály MeSH
- oligopeptidy MeSH
- protoonkogenní proteiny c-yes MeSH
- YES1 protein, human MeSH Prohlížeč
- zwitterion carboxybetaine acrylamide MeSH Prohlížeč
Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.
- Klíčová slova
- Apoptosis, High fluence low-power laser irradiation, Mitochondrial membrane potential (ΔmΦ), Photobiomodulation, Phototoxicity, Reactive oxygen species (ROS),
- MeSH
- apoptóza účinky záření MeSH
- buňky Hep G2 MeSH
- fototerapie * MeSH
- laserová terapie s nízkou intenzitou světla * MeSH
- lidé MeSH
- membránový potenciál mitochondrií genetika účinky záření MeSH
- mitochondriální membrány metabolismus účinky záření MeSH
- mitochondrie genetika účinky záření MeSH
- oxidace-redukce účinky záření MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese účinky záření MeSH
- respirační komplex IV genetika MeSH
- transport elektronů genetika účinky záření MeSH
- viabilita buněk genetika účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- respirační komplex IV MeSH
Iron oxide nanoparticles (IONs) are frequently used in various biomedical applications, in particular as magnetic resonance imaging contrast agents in liver imaging. Indeed, number of IONs have been withdrawn due to their poor clinical performance. Yet comprehensive understanding of their interactions with hepatocytes remains relatively limited. Here we investigated how iron oxide nanocubes (IO-cubes) and clusters of nanocubes (IO-clusters) affect distinct human hepatic cell lines. The viability of HepG2, Huh7 and Alexander cells was concentration-dependently decreased after exposure to either IO-cubes or IO-clusters. We found similar cytotoxicity levels in three cell lines triggered by both nanoparticle formulations. Our data indicate that different expression levels of Bcl-2 predispose cell death signaling mediated by nanoparticles. Both nanoparticles induced rather apoptosis than autophagy in HepG2. Contrary, IO-cubes and IO-clusters trigger distinct cell death signaling events in Alexander and Huh7 cells. Our data clarifies the mechanism by which cubic nanoparticles induce autophagic flux and the mechanism of subsequent toxicity. These findings imply that the cytotoxicity of ION-based contrast agents should be carefully considered, particularly in patients with liver diseases.
- Klíčová slova
- Apoptosis, Autophagy, Cytotoxicity, Iron oxide nanoparticles, Magnetic resonance imaging,
- Publikační typ
- časopisecké články MeSH