Nejvíce citovaný článek - PubMed ID 30840648
Contact with adult hen affects development of caecal microbiota in newly hatched chicks
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this study, we tested whether strains from genera Bacteroides, Megamonas, or Megasphaera can increase chicken resistance to Salmonella and Campylobacter jejuni when defined microbial mixtures consisting of these bacterial genera are administered. Mixtures consisting of different species and strains from the above-mentioned genera efficiently colonised the chicken caecum and increased chicken resistance to Salmonella by a factor of 50. The tested mixtures were even more effective in protecting chickens from Salmonella in a seeder model of infection (3-5 log reduction). The tested mixtures partially protected chickens from C. jejuni infection, though the effect was lower than that against Salmonella. The obtained data represent a first step for the development of a new type of probiotics for poultry.
- Klíčová slova
- Bacteroides, Megamonas, Megasphaera, caecum, chicken, microbiota, probiotics,
- Publikační typ
- časopisecké články MeSH
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- imunoglobuliny * MeSH
- kur domácí * mikrobiologie imunologie MeSH
- RNA ribozomální 16S * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobuliny * MeSH
- RNA ribozomální 16S * MeSH
Complex gut microbiota increases chickens' resistance to enteric pathogens. However, the principles of this phenomenon are not understood in detail. One of the possibilities for how to decipher the role of gut microbiota in chickens' resistance to enteric pathogens is to systematically characterise the gene expression of individual gut microbiota members colonising the chicken caecum. To reach this aim, newly hatched chicks were inoculated with bacterial species whose whole genomic sequence was known. Total protein purified from the chicken caecum was analysed by mass spectrometry, and the obtained spectra were searched against strain-specific protein databases generated from known genomic sequences. Campylobacter jejuni, Phascolarctobacterium sp. and Sutterella massiliensis did not utilise carbohydrates when colonising the chicken caecum. On the other hand, Bacteroides, Mediterranea, Marseilla, Megamonas, Megasphaera, Bifidobacterium, Blautia, Escherichia coli and Succinatimonas fermented carbohydrates. C. jejuni was the only motile bacterium, and Bacteroides mediterraneensis expressed the type VI secretion system. Classification of in vivo expression is key for understanding the role of individual species in complex microbial populations colonising the intestinal tract. Knowledge of the expression of motility, the type VI secretion system, and preference for carbohydrate or amino acid fermentation is important for the selection of bacteria for defined competitive exclusion products.
- Klíčová slova
- anaerobe, caecum, chicken microbiota, gene expression, mass spectrometry, metabolism,
- MeSH
- aminokyseliny MeSH
- anaerobní bakterie * metabolismus MeSH
- cékum mikrobiologie MeSH
- kur domácí * mikrobiologie MeSH
- metabolismus sacharidů MeSH
- sekreční systém typu IV MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- sekreční systém typu IV MeSH
Chickens in commercial production are hatched in hatcheries without any contact with their parents and colonization of their skin and respiratory tract is therefore dependent on environmental sources only. However, since chickens evolved to be hatched in nests, in this study we evaluated the importance of contact between hens and chicks for the development of chicken skin and tracheal microbiota. Sequencing of PCR amplified V3/V4 variable regions of the 16S rRNA gene showed that contact with adult hens decreased the abundance of E. coli, Proteus mirabilis and Clostridium perfringens both in skin and the trachea, and Acinetobacter johnsonii and Cutibacterium acnes in skin microbiota only. These species were replaced by Lactobacillus gallinarum, Lactobacillus aviarius, Limosilactobacillus reuteri, and Streptococcus pasterianus in the skin and tracheal microbiota of contact chicks. Lactobacilli can be therefore investigated for their probiotic effect in respiratory tract in the future. Skin and respiratory microbiota of contact chickens was also enriched for Phascolarctobacterium, Succinatimonas, Flavonifractor, Blautia, and [Ruminococcus] torque though, since these are strict anaerobes from the intestinal tract, it is likely that only DNA from nonviable cells was detected for these taxa.
- Klíčová slova
- caecum, chicken, respiratory tract microbiota, skin, trachea,
- MeSH
- dýchací soustava MeSH
- Escherichia coli genetika MeSH
- kur domácí * MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S analýza MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The concept of competitive exclusion is well established in poultry and different products are used to suppress the multiplication of enteric pathogens in the chicken intestinal tract. While the effect has been repeatedly confirmed, the specific principles of competitive exclusion are less clear. The aim of the study was to compare metabolites in the cecal digesta of differently colonized chickens. Metabolites in the cecal contents of chickens treated with a commercial competitive exclusion product or with an experimental product consisting of 23 gut anaerobes or in control untreated chickens were determined by mass spectrometry. Extensive differences in metabolite composition among the digesta of all 3 groups of chickens were recorded. Out of 1,706 detected compounds, 495 and 279 were differently abundant in the chicks treated with a commercial or experimental competitive exclusion product in comparison to the control group, respectively. Soyasaponins, betaine, carnitine, glutamate, tyramine, phenylacetaldehyde, or 3-methyladenine were more abundant in the digesta of control chicks while 4-oxododecanedioic acid, nucleotides, dipeptides, amino acids (except for glutamate), and vitamins were enriched in the digesta of chickens colonized by competitive exclusion products. Metabolites enriched in the digesta of control chicks can be classified as of plant feed origin released in the digesta by degradative activities of the chicken. Some of these molecules disappeared from the digesta of chicks colonized by complex microbiota due to them being metabolized. Instead, nucleotides, amino acids, and vitamins increased in the digesta of colonized chicks as a consequence of the additional digestive potential brought to the cecum by microbiota from competitive exclusion products. It is therefore possible to affect metabolite profiles in the chicken cecum by its colonization with selected bacterial species.
- Klíčová slova
- cecum, chicken, competitive exclusion, metabolome, microbiota,
- MeSH
- cékum mikrobiologie MeSH
- kur domácí * mikrobiologie MeSH
- kyselina glutamová MeSH
- nemoci drůbeže * mikrobiologie MeSH
- nukleotidy MeSH
- vitamin K MeSH
- vitaminy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina glutamová MeSH
- nukleotidy MeSH
- vitamin K MeSH
- vitaminy MeSH
An experimental group of one-day-old chicken from a commercial hatchery was given a defined mixture of 7 gut anaerobes. The next day the chicks were inoculated by an APEC strain O78:H4-ST117 resistant to ciprofloxacin, alongside with the control group and monitored for 4 wk after the inoculation for the presence of the colonizing strains and ciprofloxacin-resistant E. coli. Significant reduction of colonization rates in the first 2 wk was recorded in the experimental group for the numbers of ciprofloxacin-resistant E. coli. The results show that colonization of chicken by defined anaerobic mixtures may provide a decisive protection during the critical period of the chicken intestinal microflora development.
- Klíčová slova
- avian pathogenic Escherichia coli (APEC), chicken, colonization, competitive exclusion, probiotics,
- MeSH
- Bacteroides MeSH
- ciprofloxacin farmakologie MeSH
- Escherichia coli MeSH
- infekce vyvolané Escherichia coli * prevence a kontrola veterinární MeSH
- kur domácí MeSH
- nemoci drůbeže * prevence a kontrola MeSH
- probiotika * farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ciprofloxacin MeSH
Contaminated chicken meat is a major source of human Campylobacteriosis and rates of infection remain high, despite efforts to limit the colonisation of broiler (meat) chicken flocks on farms. Using conventional testing methods of culture or qPCR, Campylobacter is typically detected amongst broiler flocks from 3 wk of age, leading to the assumption that infection is introduced horizontally into chicken rearing houses at this time. In this study, we use parallel sequencing of a fragment of the Campylobacter outer membrane protein, encoded by the porA gene, to test for presence of Campylobacter DNA amongst fresh fecal samples collected from broiler flocks aged 23 to 28 d. Campylobacter DNA was detected in all of the 290 samples tested using the porA target, and in 48% of samples using 16S bacterial profiling, irrespective of whether or not Campylobacter could be detected using conventional qPCR thresholds. A single porAf2 variant was predominant among flocks that would be determined to be Campylobacter 'positive' by conventional means, but a diverse pattern was seen among flocks that were Campylobacter 'negative'. The ability to routinely detect low levels of Campylobacter amongst broiler flocks at a much earlier age than would conventionally be identified requires a re-examination of how and when biosecurity measures are best applied for live birds. In addition, it may be useful to investigate why single Campylobacter variants proliferate in some broiler flocks and not others.
- Klíčová slova
- broiler, campylobacter, multistrain, parallel sequencing,
- MeSH
- Campylobacter * genetika MeSH
- kampylobakterové infekce * diagnóza mikrobiologie veterinární MeSH
- kur domácí mikrobiologie MeSH
- membránové proteiny MeSH
- nemoci drůbeže * diagnóza mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
BACKGROUND: Campylobacter (C.) species are the most common bacterial cause of foodborne diarrhea in humans. Despite colonization, most animals do not show clinical signs, making recognition of affected flocks and disruption of the infection chain before slaughter challenging. Turkeys are often cocolonized with C. jejuni and C. coli. To understand the pathogen-host-interaction in the context of two different Campylobacter species, we compared the colonization patterns and quantities in mono- and co-colonized female commercial turkeys. In three repeated experiments we investigated the impact on gut morphology, functional integrity, and microbiota composition as parameters of gut health at seven, 14, and 28 days post-inoculation. RESULTS: Despite successful Campylobacter colonization, clinical signs or pathological lesions were not observed. C. coli persistently colonized the distal intestinal tract and at a higher load compared to C. jejuni. Both strains were isolated from livers and spleens, occurring more frequently in C. jejuni- and co-inoculated turkeys. Especially in C. jejuni-positive animals, translocation was accompanied by local heterophil infiltration, villus blunting, and shallower crypts. Increased permeability and lower electrogenic ion transport of the cecal mucosa were also observed. A lower relative abundance of Clostridia UCG-014, Lachnospiraceae, and Lactobacillaceae was noted in all inoculated groups compared to controls. CONCLUSIONS: In sum, C. jejuni affects gut health and may interfere with productivity in turkeys. Despite a higher cecal load, the impact of C. coli on investigated parameters was less pronounced. Interestingly, gut morphology and functional integrity were also less affected in co-inoculated animals while the C. jejuni load decreased over time, suggesting C. coli may outcompete C. jejuni. Since a microbiota shift was observed in all inoculated groups, future Campylobacter intervention strategies may involve stabilization of the gut microbiota, making it more resilient to Campylobacter colonization in the first place.
- Klíčová slova
- Campylobacter, Gut health, Microbiota composition, Morphology, Turkey, Ussing chambers,
- Publikační typ
- časopisecké články MeSH
The gut microbiota of warm-blooded vertebrates consists of bacterial species belonging to two main phyla; Firmicutes and Bacteroidetes. However, does it mean that the same bacterial species are found in humans and chickens? Here we show that the ability to survive in an aerobic environment is central for host species adaptation. Known bacterial species commonly found in humans, pigs, chickens and Antarctic gentoo penguins are those capable of extended survival under aerobic conditions, i.e., either spore-forming, aerotolerant or facultatively anaerobic bacteria. Such bacteria are ubiquitously distributed in the environment, which acts as the source of infection with similar probability in humans, pigs, chickens, penguins and likely any other warm-blooded omnivorous hosts. On the other hand, gut anaerobes with no specific adaptation for survival in an aerobic environment exhibit host adaptation. This is associated with their vertical transmission from mothers to offspring and long-term colonisation after administration of a single dose. This knowledge influences the design of next-generation probiotics. The origin of aerotolerant or spore-forming probiotic strains may not be that important. On the other hand, if Bacteroidetes and other host-adapted species are used as future probiotics, host preference should be considered.
- Klíčová slova
- chicken, endospore, environment, gut microbiota, host adaptation, human, penguin, pig, spread,
- Publikační typ
- časopisecké články MeSH
In this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted as an important source of gut microbiota for the chickens in commercial production. Following the experimental administration of potential probiotics, we found that chickens can be colonised only when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or hatching itself did not result in effective chicken colonisation. Such conclusions should be considered when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the hatching process did not result in efficient colonisation.
- Klíčová slova
- caecum, chicken, eggshell, feed, hatchery, microbiota,
- Publikační typ
- časopisecké články MeSH