Nejvíce citovaný článek - PubMed ID 31312212
Natural Killer Cell Receptor Genes in Camels: Another Mammalian Model
BACKGROUND: The mammalian Natural Killer Complex (NKC) harbors genes and gene families encoding a variety of C-type lectin-like proteins expressed on various immune cells. The NKC is a complex genomic region well-characterized in mice, humans and domestic animals. The major limitations of automatic annotation of the NKC in non-model animals include short-read based sequencing, methods of assembling highly homologous and repetitive sequences, orthologues missing from reference databases and weak expression. In this situation, manual annotations of complex genomic regions are necessary. METHODS: This study presents a manual annotation of the genomic structure of the NKC region in a high-quality reference genome of the domestic cat and compares it with other felid species and with representatives of other carnivore families. Reference genomes of Carnivora, irrespective of sequencing and assembly methods, were screened by BLAST to retrieve information on their killer cell lectin-like receptor (KLR) gene content. Phylogenetic analysis of in silico translated proteins of expanded subfamilies was carried out. RESULTS: The overall genomic structure of the NKC in Carnivora is rather conservative in terms of its C-type lectin receptor gene content. A novel KLRH-like gene subfamily (KLRL) was identified in all Carnivora and a novel KLRJ-like gene was annotated in the Mustelidae. In all six families studied, one subfamily (KLRC) expanded and experienced pseudogenization. The KLRH gene subfamily expanded in all carnivore families except the Canidae. The KLRL gene subfamily expanded in carnivore families except the Felidae and Canidae, and in the Canidae it eroded to fragments. CONCLUSIONS: Knowledge of the genomic structure and gene content of the NKC region is a prerequisite for accurate annotations of newly sequenced genomes, especially of endangered wildlife species. Identification of expressed genes, pseudogenes and gene fragments in the context of expanded gene families would allow the assessment of functionally important variability in particular species.
- Klíčová slova
- CLEC, Felids, KLR, Natural Killer Complex, carnivore, genomes,
- MeSH
- anotace sekvence MeSH
- buňky NK * imunologie metabolismus MeSH
- Carnivora * genetika MeSH
- fylogeneze * MeSH
- genom MeSH
- genomika * metody MeSH
- kočky genetika MeSH
- lektiny typu C genetika MeSH
- zvířata MeSH
- Check Tag
- kočky genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- lektiny typu C MeSH
BACKGROUND: The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. METHODS: As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. RESULTS: Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. CONCLUSIONS: The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.
- Klíčová slova
- KIR, LILR, Leukocyte Receptor Complex, carnivora, felids, long-read sequencing,
- MeSH
- Canidae * MeSH
- Carnivora * genetika MeSH
- Felidae * MeSH
- fylogeneze MeSH
- genomika MeSH
- lachtani * MeSH
- leukocyty MeSH
- lidé MeSH
- Mustelidae * MeSH
- myši MeSH
- receptory imunologické genetika MeSH
- receptory KIR genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory imunologické MeSH
- receptory KIR MeSH
We identified and characterized 11 polymorphic microsatellite markers suitable for routine testing (three in the MHC class I sub-region, four in MHC class II and four in the MHC class III sub-region) of dromedaries and Bactrian camels. In total, 38 dromedaries and 33 Bactrian camels were genotyped, and interspecific differences were observed in the numbers of alleles and in allelic frequencies, as well as in the observed heterozygosity. These loci may be used as markers to study the adaptive genetic diversity of the MHC region in Old World camels.
- Klíčová slova
- Camelus bactrianus, Camelus dromedarius, camels, genetic diversity, major histocompatibility complex, microsatellite markers,
- Publikační typ
- časopisecké články MeSH
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
- Klíčová slova
- Felis catus, comparative genomics, conservation genetics, domestic cat, felidae, genetic diversity, major histocompatibility complex, natural killer cell receptor ligands,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.
- Klíčová slova
- Old World camels, coronavirus, immune response genes, in-solution hybridization capture, zoonosis,
- MeSH
- adaptivní imunita genetika MeSH
- bronchy cytologie fyziologie MeSH
- cilie fyziologie MeSH
- COVID-19 genetika imunologie virologie MeSH
- genetická predispozice k nemoci MeSH
- interakce mikroorganismu a hostitele genetika imunologie MeSH
- koronavirové infekce genetika imunologie přenos virologie MeSH
- koronavirus MERS imunologie izolace a purifikace patogenita MeSH
- lidé MeSH
- objevující se infekční nemoci genetika imunologie přenos virologie MeSH
- přirozená imunita genetika MeSH
- protilátky virové MeSH
- replikace viru genetika imunologie MeSH
- respirační sliznice cytologie fyziologie MeSH
- SARS-CoV-2 imunologie patogenita MeSH
- velbloudi genetika imunologie virologie MeSH
- zdroje nemoci virologie MeSH
- zoonózy genetika imunologie přenos virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené arabské emiráty MeSH
- Názvy látek
- protilátky virové MeSH
BACKGROUND: Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, diversity in these genomic regions is essential for species' survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes. RESULTS: In this work, we improved the genome assemblies of the three Old World camel species - domestic dromedary and Bactrian camel, and the two-humped wild camel - via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex. CONCLUSIONS: The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with a combined role of population history and differential exposures to pathogens, and consequent different selective pressures.
- Klíčová slova
- Chromosome conformation capture, Chromosome mapping, Dromedary, Genetic diversity, Genome annotation, Genome assembly, Immune response genes, Scaffolding,
- MeSH
- anotace sekvence MeSH
- imunoproteiny genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kontigové mapování MeSH
- lokus kvantitativního znaku MeSH
- velbloudi genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoproteiny MeSH
This study brings new information on major histocompatibility complex (MHC) class III sub-region genes in Old World camels and integrates current knowledge of the MHC region into a comprehensive overview for Old World camels. Out of the MHC class III genes characterized, TNFA and the LY6 gene family showed high levels of conservation, characteristic for MHC class III loci in general. For comparison, an MHC class II gene TAP1, not coding for antigen presenting molecules but functionally related to MHC antigen presenting functions was studied. TAP1 had many SNPs, even higher than the MHC class I and II genes encoding antigen presenting molecules. Based on this knowledge and using new camel genomic resources, we constructed an improved genomic map of the entire MHC region of Old World camels. The MHC class III sub-region shows a standard organization similar to that of pig or cattle. The overall genomic structure of the camel MHC is more similar to pig MHC than to cattle MHC. This conclusion is supported by differences in the organization of the MHC class II sub-region, absence of functional DY genes, different organization of MIC genes in the MHC class I sub-region, and generally closer evolutionary relationships of camel and porcine MHC gene sequences analyzed so far.
- Klíčová slova
- Bactrian camel, MHC, Old World camels, SNP, camels, dromedary, major histocompatibility complex,
- MeSH
- antigeny Ly klasifikace genetika MeSH
- fylogeneze MeSH
- hlavní histokompatibilní komplex * MeSH
- jednonukleotidový polymorfismus MeSH
- prasata MeSH
- skot MeSH
- TNF-alfa klasifikace MeSH
- velbloudi genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny Ly MeSH
- TNF-alfa MeSH