Most cited article - PubMed ID 31658718
Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions
Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat. Through a review of the existing literature, we aim to provide a first overview of the biodiversity, primary production, trophic networks, and matter flow of a glacier ecosystem. We use the Forni Glacier (Central Italian Alps) - one of the best studied alpine glaciers in the world - as a model system for our literature review and integrate additional original data. We reveal the importance of allochthonous organic matter inputs, of Cyanobacteria and eukaryotic green algae in primary production, and the key role of springtails (Vertagopus glacialis) on the glacier surface in sustaining populations of two apex terrestrial predators: Nebria castanea (Coleoptera: Carabidae) and Pardosa saturatior (Araneae: Lycosidae). The cryophilic tardigrade Cryobiotus klebelsbergi is the apex consumer in cryoconite holes. This short food web highlights the fragility of nodes represented by invertebrates, contrasting with structured microbial communities in all glacier habitats. Although further research is necessary to quantify the ecological interactions of glacier organisms, this review summarises and integrates existing knowledge about the ecological processes on alpine glaciers and supports the importance of glacier-adapted organisms in providing ecosystem services.
- Keywords
- cryophiles, ecological interactions, glacial ecosystems, glacier ecology, supraglacial ecosystem, trophic webs,
- MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Ice Cover * MeSH
- Food Chain MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Snow algae blooms often form green or red coloured patches in melting alpine and polar snowfields worldwide, yet little is known about their biology, biogeography, and species diversity. We investigated eight isolates collected from red snow in northern Norway, using a combination of morphology, 18S rRNA gene and internal transcribed spacer 2 (ITS2) genetic markers. Phylogenetic and ITS2 rRNA secondary structure analyses assigned six isolates to the species Raphidonema nivale, Deuterostichococcus epilithicus, Chloromonas reticulata, and Xanthonema bristolianum. Two novel isolates belonging to the family Stichococcaceae (ARK-S05-19) and the genus Chloromonas (ARK-S08-19) were identified as potentially new species. In laboratory cultivation, differences in the growth rate and fatty acid profiles were observed between the strains. Chlorophyta were characterized by abundant C18:3n-3 fatty-acids with increases in C18:1n-9 in the stationary phase, whilst Xanthonema (Ochrophyta) was characterized by a large proportion of C20:5n-3, with increases in C16:1n-7 in the stationary phase. In a further experiment, lipid droplet formation was studied in C. reticulata at the single-cell level using imaging flow cytometry. Our study establishes new cultures of snow algae, reveals novel data on their biodiversity and biogeography, and provides an initial characterization of physiological traits that shape natural communities and their ecophysiological properties.
- Keywords
- 18S rRNA, ITS2 rRNA, fatty acids, imaging flow cytometry, microalgae, phylogeny,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * genetics MeSH
- Phylogeny MeSH
- Lipids MeSH
- Microbiota * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Norway MeSH
- Names of Substances
- Lipids MeSH
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
- Keywords
- biodiversity, cryoflora, environmental sample, fatty acids, fluorometry, vegetative stages,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * physiology MeSH
- Photosynthesis physiology MeSH
- Cold Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
UNLABELLED: Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
- Keywords
- Arctic, Astaxanthin, Chlamydomonas nivalis, Cryoflora, Green algae, Polyunsaturated fatty acid,
- Publication type
- Journal Article MeSH
A terrestrial green alga was isolated at Iceland, and the strain (SAG 2627) was described for its morphology and phylogenetic position and tested for biotechnological capabilities. Cells had a distinctly curved, crescent shape with conical poles and a single parietal chloroplast. Phylogenetic analyses of 18S rDNA and rbcL markers placed the strain into the Trebouxiophyceae (Chlorophyta). The alga turned out to belong to an independent lineage without an obvious sister group within the Trebouxiophyceae. Based on morphological and phylogenetic data, the strain was described as a new genus and species, Thorsmoerkia curvula gen. et sp. nov. Biomass was generated in column reactors and subsequently screened for promising metabolites. Growth was optimized by pH-regulated, episodic CO2 supplement during the logarithmic growth-phase, and half of the biomass was thereafter exposed to nitrogen and phosphate depletion. The biomass yield reached up to 53.5 mg L-1 day-1. Fatty acid (FA) production peaked at 24 mg L-1 day-1 and up to 83% of all FAs were unsaturated. At the end of the log phase, approximately 45% of dry mass were lipids, including eicosapentaenoic acid. Carotenoid production reached up to 2.94 mg L-1 day-1 but it was halted during the stress phase. The N-linked glycans of glycoproteins were assessed to reveal chemotaxonomic patterns. The study demonstrated that new microalgae can be found at Iceland, potentially suitable for applied purposes. The advantage of T. curvula is its robustness and that significant amounts of lipids are already accumulated during log phase, making a subsequent stress exposure dispensable.
- Keywords
- Biodiversity, Iceland, Polyunsaturated fatty acids, Semi-terrestrial algae, Taxonomy, Trebouxiophyceae,
- Publication type
- Journal Article MeSH
Snow algae are photosynthetic microbes that inhabit the melting snow surface in alpine and polar regions. We analyzed the pigment and species composition of colored snow collected on Mt. Tateyama in Japan during the melting seasons of 2015 and 2016. High-performance liquid chromatographic analyses of the pigments extracted from the colored snow showed that their composition varied within the study area and were classified into four types: Type A (astaxanthin-monoester dominant), Type B (medium astaxanthin-monoester content), Type C (abundant primary carotenoids and free-astaxanthin), and Type D (abundant primary carotenoids and astaxanthin diesters). Types A and B were most commonly observed in the study area, whereas Types C and D appeared only at specific sites. Analysis of the 18S ribosomal RNA (18S rRNA) gene revealed six major amplicon sequence variants (ASVs) of snow algae, belonging to the Sanguina, Chloromonas, and Chlainomonas groups. The relative abundance of the algal ASVs showed that Sanguina was dominant (>48%) in both Types A and B, suggesting that the difference in astaxanthin abundance between the two types was caused by the production of pigments in the algal cells. The algal community structures of Types C and D differed from those of Types A and B, indicating that the primary carotenoids and astaxanthin diesters were derived from certain algal species in these types. Therefore, astaxanthin-rich Sanguina algae mostly induced the red snow that appeared widely in this alpine area; however, they were partially dominated by Chloromonas or Chlainomonas algae, causing different pigment compositions.
- Keywords
- 18S rRNA, Chloromonas, Sanguina, astaxanthin, phylogenetic analysis, pigment composition, red snow, snow algae,
- Publication type
- Journal Article MeSH
Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.
- Keywords
- UV-A radiation, UV-B radiation, astaxanthin, chlorophyll fluorescence, cysts, photosynthesis, polyunsaturated fatty acids, snow algae,
- Publication type
- Journal Article MeSH