Most cited article - PubMed ID 32260108
Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316L Stainless Steel
Components produced by additive technology are implemented in various spheres of industry, such as automotive or aerospace. This manufacturing process can lead to making highly optimized parts. There is not enough information about the quality of the parts produced by additive technologies, especially those made from metal powder. The research in this article deals with the porosity of components produced by additive technologies. The components used for the research were manufactured by the selective laser melting (SLM) method. The shape of these components is the same as the shape used for the tensile test. The investigated parts were printed with orientation in two directions, Z and XZ with respect to the machine platform. The printing strategy was "stripe". The material used for printing of the parts was SS 316L-0407. The printing parameters were laser power of 200 W, scanning speed of 650 mm/s, and the thickness of the layer was 50 µm. A non-destructive method was used for the components' porosity evaluation. The scanning was performed by CT machine METROTOM 1500. The radiation parameters used for getting 3D scans were voltage 180 kV, current 900 µA, detector resolution 1024 × 1024 px, voxel size 119.43 µm, number of projections 1050, and integration time 2000 ms. This entire measurement process responds to the computer aided quality (CAQ) technology. VG studio MAX 3.0 software was used to evaluate the obtained data. The porosity of the parts with Z and XZ orientation was also evaluated for parts' thicknesses of 1, 2, and 3 mm, respectively. It has been proven by this experimental investigation that the printing direction of the part in the additive manufacturing process under question affects its porosity.
- Keywords
- SLM, additive technology, computer tomography, porosity,
- Publication type
- Journal Article MeSH
The aim of this work was to monitor the mechanical behavior of 316L stainless steel produced by 3D printing in the vertical direction. The material was tested in the "as printed" state. Digital Image Correlation measurements were used for 4 types of notched specimens. The behavior of these specimens under monotonic loading was investigated in two loading paths: tension and torsion. Based on the experimental data, two yield criteria were used in the finite element analyses. Von Mises criterion and Hill criterion were applied, together with the nonlinear isotropic hardening rule of Voce. Subsequently, the load-deformation responses of simulations and experiments were compared. Results of the Hill criterion show better correlation with experimental data. The numerical study shows that taking into account the difference in yield stress in the horizontal direction of printing plays a crucial role for modeling of notched geometries loaded in the vertical direction of printing. Ductility of 3D printed specimens in the "as printed" state is also compared with 3D printed machined specimens and specimens produced by conventional methods. "As printed" specimens have 2/3 lower ductility than specimens produced by a conventional production method. Machining of "as printed" specimens does not affect the yield stress, but a significant reduction of ductility was observed due to microcracks arising from the pores as a microscopic surface study showed.
In this work, a systematic analysis of the hot deformation mechanism and a microstructure characterization of an as-cast single α-phase Mg-4.5 Li-1.5 Al alloy modified with 0.2% TiB addition, as a grain refiner, is presented. The optimized constitutive model and hot working terms of the Mg-Li alloy were also determined. The hot compression procedure of the Mg-4.5 Li-1.5 Al + 0.2 TiB alloy was performed using a DIL 805 A/D dilatometer at deformation temperatures from 250 °C to 400 °C and with strain rates of 0.01-1 s-1. The processing map adapted from a dynamic material model (DMM) of the as-cast alloy was developed through the superposition of the established instability map and power dissipation map. By considering the processing maps and microstructure characteristics, the processing window for the Mg-Li alloy were determined to be at the deformation temperature of 590 K-670 K and with a strain rate range of 0.01-0.02 s-1.
- Keywords
- constitutive model, flow stress, hot compression test, magnesium alloy, microstructure evolution, processing map,
- Publication type
- Journal Article MeSH
The manufacturing route primarily determines the properties of materials prepared by additive manufacturing methods. In this work, the microstructural features and mechanical properties of 316 L stainless steel prepared by the selective laser method have been determined. Three types of samples, (i) selective laser melted (SLM), (ii) selective laser melted and hot isostatic pressed (HIP) and (iii) selective laser melted and heat treated (HT), were characterized. Microstructural analysis revealed that SLM samples were formed by melt pool boundaries with fine cellular-dendritic-type microstructure. This type of microstructure disappeared after HT or HIP and material were formed by larger grains and sharply defined grain boundaries. The SLM-prepared samples contained different levels of porosity depending on the preparation conditions. The open interconnected LOF (lack of fusion) pores were observed in the samples, which were prepared with using of scanning speed 1200 mm/s. The blowhole and keyhole type of porosity were observed in the samples prepared by lower scanning speeds. The HIP caused a significant decrease in internal closed porosity to 0.1%, and a higher pressure of 190 MPa was more effective than the usually used pressure of 140 MPa, but for samples with open porosity, HIP was not effective. The relatively high yield strength of 570 MPa, tensile strength of 650 MPa and low ductility of 30-34% were determined for SLM samples with the lower porosity content than 1.3%. The samples after HIP showed lower yield strengths than after SLM (from 290 to 325 MPa) and relatively high ductility of 47.8-48.5%, regardless of the used SLM conditions.
- Keywords
- 316 L steel, X-ray computed micro-tomography, additive manufacturing, hot isostatic pressing, porosity, selective laser melting, tensile strength,
- Publication type
- Journal Article MeSH
This work is focused on the analysis of the influence of welding on the properties and microstructure of the AISI316L stainless steel tube produced by 3D printing, specifically the SLM (Selective Laser Melting) method. Both non-destructive and destructive tests, including metallographic and fractographic analyses, were performed within the experiment. Microstructure analysis shows that the initial texture of the 3D print disappears toward the fuse boundary. It is evident that high temperature during welding has a positive effect on microstructure. Material failure occurred in the base material near the heat affected zone (HAZ). The results obtained show the fundamental influence of SLM technology in terms of material defects, on the properties of welded joints.
- Keywords
- mechanical properties, microstructure, selective laser melting, welded joints,
- Publication type
- Journal Article MeSH
In the present study, 18% Ni 300 maraging steel powder was processed using a selective laser melting (SLM) technique to study porosity variations, microstructure, and hardness using various process conditions, while maintaining a constant level of energy density. Nowadays, there is wide range of utilization of metal technologies and its products can obtain high relative density. A dilatometry study revealed that, through heating cycles, two solid-state effects took place, i.e., precipitation of intermetallic compounds and the reversion of martensite to austenite. During the cooling process, one reaction took place (i.e., martensitic transformation), which was confirmed by microstructure observation. The improvements in the Rockwell hardness of the analyzed material from 42 ± 2 to 52 ± 0.5 HRC was improved as a result of aging treatment at 480 °C for 5 h. The results revealed that the relative density increased using laser speed (340 mm/s), layer thickness (30 µm), and hatch distance (120 µm). Relative density was found approximately 99.3%. Knowledge about the influence of individual parameters in the SLM process on porosity will enable potential manufacturers to produce high quality components with desired properties.
- Keywords
- 18Ni-300 maraging steel, 3D printing parameters, SLM, relative density, structure,
- Publication type
- Journal Article MeSH