Most cited article - PubMed ID 32413087
Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress
The effect of toxic element multicontamination on photosynthetic responses was observed in a greenhouse hydroponic culture of lettuce plants (Lactuca sativa var. capitata). The experiment focused only on the combined effect of selected toxic elements without the influence of soil, due to the hydroponic conditions. Pre-cultivated (six-true-leaf stage) plants were grown in control and contaminated hydroponic culture for 14 d. The mix of toxic elements (As, Cd, Pb, and Zn) in the contaminated solution corresponded to the water-soluble fraction of soil from the anthropogenically contaminated Litavka River area, Czech Republic. The plant response was measured by determining the toxic element contents, dry biomass, and gas-exchange parameters. Lettuce accumulated toxic elements predominantly in the roots, with low translocation to the leaves. The uptake of toxic elements harmed photosynthesis and caused a decrease in net photosynthetic rate, transpiration rate, and stomatal conductance. Consequently, the whole dry biomass of the plants decreased. The results show that contamination in hydroponic conditions had an irreversible effect on plant fitness due to direct contact between the roots and contaminated solutions.
- Keywords
- solution, stress, toxic element, translocation factor, transpiration rate,
- Publication type
- Journal Article MeSH
Three garden vegetables-radish, carrot and lettuce-were cultivated in a pot experiment using two soils from the Příbram area polluted mainly by cadmium (Cd), zinc (Zn), lead (Pb) and chromium (Cr). The soils of the Příbram district, Czech Republic, are heavily polluted as a result of the atmospheric deposition of toxic elements originating from historic lead-silver mining and smelting activities. The results showed that lettuce absorbed the highest amounts of toxic elements (Cd 28 and 30, Cr 12 and 13, Zn 92 and 205 mg·kg-1 DW), except Pb, which was higher in radish (30 and 49 mg·kg-1 DW). Changes in macronutrient contents in edible parts were not found, except for sulfur. A higher total free amino acids (fAAs) accumulation was shown in all vegetables in more contaminated soil, with the highest fAA content being in radish. A group of essential fAAs reached 7-24% of total fAAs in vegetables. The risk to human health was characterized using the target hazard quotient and total hazard index (HI). The cumulative effect of the consumption of vegetables with HI > 1 showed possible non-carcinogenic health effects for lettuce and carrot. HI decreased in the order Cd > Pb > Cr > Zn. The carcinogenic risk of toxic elements decreased in the order Cd > Cr > Pb (0.00054, 0.00026, 0.00003). These values showed a carcinogenic risk from the consumption of lettuce and carrot and confirmed that the adult population of the studied area is at high risk if lettuce and carrot cultivated in this area are consumed daily.
- Keywords
- Daucus carota, Lactuca sativa, Rapahanus sativus, cadmium, carcinogenic risk, lead, target hazard quotient, toxic elements, zinc,
- Publication type
- Journal Article MeSH
In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. 'Viola') was cultivated under two levels of As soil contamination-20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5'-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate-Glu, aspartate, glutamine-Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio-a significant indicator of primary N assimilation in plants-decreased under the As100 treatment condition. A decrease in antioxidative metabolite content-namely that of ascorbic acid and anthocyanins-was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots.
- Keywords
- metalloid, methionine, stress metabolism, vegetable, vitamin C,
- Publication type
- Journal Article MeSH
In this study, we observed the effect of the application of soil dust enriched with risk elements (Cd, Pb, As and Zn) to leaf surfaces of lettuce (Lactuca sativa var. capitata) while it was grown under hydroponic conditions. This study aimed to determine how low soil dust particulate matter (PM) doses affected the activity of or damaged the photosynthetic apparatus and how the uptake of risk elements was associated with both epigenetic changes (5-methylcytosine content, i.e., 5mC) and stress metabolism. During the study, we obtained many results pertaining to risk element contents and biochemical (total phenolic content (TPC), malondialdehyde (MDA) content and the amount of free amino acids (AAs)) and physiological (photosynthesis parameters: net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, instantaneous water-use efficiency, maximum quantum yield of PSII, chlorophyll and carotenoid contents, and leaf water potential (WP)) plant features. The results showed an increase in MDA and 5mC. However, the transpiration rate, WP and free AAs decreased. In conclusion, contamination by very low doses of soil dust PM had no direct or significant effect on plant fitness, as shown by the TPC and 5mC content, which indicates that plants can overcome the oxidative stress caused by the accumulation of risk elements. From the above, we propose the use of epigenetic changes as biomarkers of potential changes in the activation of plant metabolism under stress caused by environmental pollution.
- MeSH
- Chlorophyll metabolism MeSH
- Photosynthesis MeSH
- Plant Leaves metabolism MeSH
- Particulate Matter * metabolism MeSH
- Dust * MeSH
- Soil chemistry MeSH
- Plants metabolism MeSH
- Lactuca metabolism MeSH
- Water metabolism MeSH
- Environmental Pollution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll MeSH
- Particulate Matter * MeSH
- Dust * MeSH
- Soil MeSH
- Water MeSH
Arsenic is a ubiquitous toxic element that can be accumulated into plant parts. The present study investigated the response of Pteris cretica and Spinacia oleracea to As treatment through the analysis of selected physiological and metabolic parameters. Plants were grown in pots in As(V) spiked soil (20 and 100 mg/kg). Plants' physiological condition was estimated through the determination of elements, gas-exchange parameters, chlorophyll fluorescence, water potential, photosynthetic pigments, and free amino acid content. The results confirmed differing As accumulation in plants, as well as in shoots and roots, which indicated that P. cretica is an As-hyperaccumulator and that S. oleracea is an As-root excluder. Variations in physiological and metabolic parameters were observed among As treatments. Overall, the results revealed a significant effect of 100 mg/kg As treatment on the analysed parameters. In both plants, this treatment affected growth, N, Mg, S, Mn, and Zn content, as well as net photosynthetic rate, chlorophyll fluorescence, and total free amino acid content. In conclusion, the results reflect the similarity between P. cretica and S. oleracea in some aspects of plants' response to As treatment, while physiological and metabolic parameter changes related to As treatments indicate the higher sensitivity of S. oleracea.
- Keywords
- abiotic stress, amaranthaceae family, arsenic contamination, fern, metalloid, pteridaceae family, spinach,
- Publication type
- Journal Article MeSH