Nejvíce citovaný článek - PubMed ID 32428499
Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution
Mitochondria are dynamic and plastic, undergoing continuous fission and fusion and rearrangement of their bioenergetic sub-compartments called cristae. These fascinating processes are best understood in animal and fungal models, which are taxonomically grouped together in the expansive Opisthokonta supergroup. In opisthokonts, crista remodelling and inner membrane fusion are linked by dynamin-related proteins (DRPs). Animal Opa1 (optical atrophy 1) and fungal Mgm1 (mitochondrial genome maintenance 1) are tacitly considered orthologs because their similar mitochondria-shaping roles are mediated by seemingly shared biochemical properties, and due to their presence in the two major opisthokontan subdivisions, Holozoa and Holomycota, respectively. However, molecular phylogenetics challenges this notion, suggesting that Opa1 and Mgm1 likely had separate, albeit convergent, evolutionary paths. Herein, we illuminate disparities in proteolytic processing, structure, and interaction network that may have bestowed on Opa1 and Mgm1 distinct mechanisms of membrane remodelling. A key disparity is that, unlike Mgm1, Opa1 directly recruits the mitochondrial phospholipid cardiolipin to remodel membranes. The differences outlined herein between the two DRPs could have broader impacts on mitochondrial morphogenesis. Outer and inner membrane fusion are autonomous in animals, which may have freed Opa1 to repurpose its intrinsic activity to remodel cristae, thereby regulating the formation of respiratory chain supercomplexes. More significantly, Opa1-mediated crista remodelling has emerged as an integral part of cytochrome c-regulated apoptosis in vertebrates, and perhaps in the cenancestor of animals. By contrast, outer and inner membrane fusion are coupled in budding yeast. Consequently, Mgm1 membrane-fusion activity is inextricable from its role in the biogenesis of fungal lamellar cristae. These disparate mitochondrial DRPs ultimately may have contributed to the different modes of multicellularity that have evolved within Opisthokonta.
- Klíčová slova
- Mgm1, Opa1, apoptosis, cristae, dynamin‐related protein, membrane remodelling, mitochondrial dynamics, phylogeny,
- MeSH
- fúze membrán * fyziologie MeSH
- houby * fyziologie MeSH
- mitochondriální dynamika * fyziologie MeSH
- mitochondriální membrány * fyziologie MeSH
- mitochondriální proteiny metabolismus genetika MeSH
- mitochondrie * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální proteiny MeSH
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
- Klíčová slova
- constructive neutral evolution, evolutionary divergence, evolutionary mechanisms, gene replacement, molecular evolution, protein complexes,
- MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The knowledge of cell biology of a eukaryotic group is essential for correct interpretation of ecological and molecular data. Although diplonemid protists are one of the most species-rich lineages of marine eukaryotes, only very fragmentary information is available about the cellular architecture of this taxonomically diverse group. Here, a large serial block-face scanning electron microscopy data set complemented with light and fluorescence microscopy allowed the first detailed three-dimensional reconstruction of a diplonemid species. We describe numerous previously unknown peculiarities of the cellular architecture and cell division characteristic for diplonemid flagellates, and illustrate the obtained results with multiple three-dimensional models, comprehensible for non-specialists in protist ultrastructure.
- Klíčová slova
- 3-dimensional reconstruction, Euglenozoa, SBF-SEM, cell division, diplonemid, ultrastructure,
- MeSH
- Eukaryota * MeSH
- mikroskopie elektronová rastrovací MeSH
- organely MeSH
- zobrazování trojrozměrné * metody MeSH
- Publikační typ
- časopisecké články MeSH
The diverse GTPases of the dynamin superfamily play various roles in the cell, as exemplified by the dynamin-related proteins (DRPs) Mgm1 and Opa1, which remodel the mitochondrial inner membrane in fungi and metazoans, respectively. Via an exhaustive search of genomic and metagenomic databases, we found previously unknown DRP types occurring in diverse eukaryotes and giant viruses (phylum Nucleocytoviricota). One novel DRP clade, termed MidX, combined hitherto uncharacterized proteins from giant viruses and six distantly related eukaryote taxa (Stramenopiles, Telonemia, Picozoa, Amoebozoa, Apusomonadida, and Choanoflagellata). MidX stood out because it was not only predicted to be mitochondria-targeted but also to assume a tertiary structure not observed in other DRPs before. To understand how MidX affects mitochondria, we exogenously expressed MidX from Hyperionvirus in the kinetoplastid Trypanosoma brucei, which lacks Mgm1 or Opa1 orthologs. MidX massively affected mitochondrial morphology from inside the matrix, where it closely associates with the inner membrane. This unprecedented mode of action contrasts to those of Mgm1 and Opa1, which mediate inner membrane remodeling in the intermembrane space. We speculate that MidX was acquired in Nucleocytoviricota evolution by horizontal gene transfer from eukaryotes and is used by giant viruses to remodel host mitochondria during infection. MidX's unique structure may be an adaptation for reshaping mitochondria from the inside. Finally, Mgm1 forms a sister group to MidX and not Opa1 in our phylogenetic analysis, throwing into question the long-presumed homology of these DRPs with similar roles in sister lineages.
- Klíčová slova
- Nucleocytoviricota, Mgm1, Opa1, dynamin superfamily, mitochondria, protists,
- MeSH
- dynaminy genetika metabolismus MeSH
- fylogeneze MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- obří viry * genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dynaminy MeSH
- mitochondriální proteiny MeSH
Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.
- MeSH
- lipidy MeSH
- mitochondriální protonové ATPasy * metabolismus MeSH
- podjednotky proteinů metabolismus MeSH
- protony MeSH
- savci MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- mitochondriální protonové ATPasy * MeSH
- podjednotky proteinů MeSH
- protony MeSH
- voda MeSH
Parasites are widespread and diverse in oceanic plankton and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and how the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the marine parasite Amoebophrya (Syndiniales) during intracellular infection, particularly following engulfment and digestion of nutrient-rich host chromosomes. Changes include a sequential acristate and cristate mitochondrion with a 200-fold increase in volume, a 13-fold increase in nucleus volume, development of Golgi apparatus and a metabolic switch from glycolysis (within the host) to TCA (free-living dinospore). Similar changes are seen in apicomplexan parasites, thus underlining convergent traits driven by metabolic constraints and the infection cycle. In the algal host, energy-producing organelles (plastid, mitochondria) remain relatively intact during most of the infection. We also observed that sugar reserves diminish while lipid droplets increase. Rapid infection of the host nucleus could be a "zombifying" strategy, allowing the parasite to digest nutrient-rich chromosomes and escape cytoplasmic defense, whilst benefiting from maintained carbon-energy production of the host cell.
- MeSH
- cukry MeSH
- Dinoflagellata * MeSH
- mikrořasy * MeSH
- paraziti * MeSH
- uhlík MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
- uhlík MeSH
BACKGROUND: The plastid genomes of the green algal order Chlamydomonadales tend to expand their non-coding regions, but this phenomenon is poorly understood. Here we shed new light on organellar genome evolution in Chlamydomonadales by studying a previously unknown non-photosynthetic lineage. We established cultures of two new Polytoma-like flagellates, defined their basic characteristics and phylogenetic position, and obtained complete organellar genome sequences and a transcriptome assembly for one of them. RESULTS: We discovered a novel deeply diverged chlamydomonadalean lineage that has no close photosynthetic relatives and represents an independent case of photosynthesis loss. To accommodate these organisms, we establish the new genus Leontynka, with two species (L. pallida and L. elongata) distinguishable through both their morphological and molecular characteristics. Notable features of the colourless plastid of L. pallida deduced from the plastid genome (plastome) sequence and transcriptome assembly include the retention of ATP synthase, thylakoid-associated proteins, the carotenoid biosynthesis pathway, and a plastoquinone-based electron transport chain, the latter two modules having an obvious functional link to the eyespot present in Leontynka. Most strikingly, the ~362 kbp plastome of L. pallida is by far the largest among the non-photosynthetic eukaryotes investigated to date due to an extreme proliferation of sequence repeats. These repeats are also present in coding sequences, with one repeat type found in the exons of 11 out of 34 protein-coding genes, with up to 36 copies per gene, thus affecting the encoded proteins. The mitochondrial genome of L. pallida is likewise exceptionally large, with its >104 kbp surpassed only by the mitogenome of Haematococcus lacustris among all members of Chlamydomonadales hitherto studied. It is also bloated with repeats, though entirely different from those in the L. pallida plastome, which contrasts with the situation in H. lacustris where both the organellar genomes have accumulated related repeats. Furthermore, the L. pallida mitogenome exhibits an extremely high GC content in both coding and non-coding regions and, strikingly, a high number of predicted G-quadruplexes. CONCLUSIONS: With its unprecedented combination of plastid and mitochondrial genome characteristics, Leontynka pushes the frontiers of organellar genome diversity and is an interesting model for studying organellar genome evolution.
- Klíčová slova
- Chlamydomonadales, G-quadruplex, GC content, Green algae, Mitochondrial genome, Non-photosynthetic algae, Plastid genome, Repeat expansion,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * genetika MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- genom plastidový * MeSH
- molekulární evoluce MeSH
- plastidy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
- Klíčová slova
- ATP synthase, cryo-EM, mitochondria, mitochondrial membrane potential, oxidative phosphorylation,
- MeSH
- genetické inženýrství * MeSH
- Leishmania enzymologie MeSH
- membránový potenciál mitochondrií MeSH
- mitochondriální protonové ATPasy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Trypanosoma brucei brucei enzymologie MeSH
- Trypanosoma cruzi enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální protonové ATPasy MeSH
- protozoální proteiny MeSH
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
- Klíčová slova
- ATP synthase, MICOS, Trypanosoma, evolution, mitochondria,
- Publikační typ
- časopisecké články MeSH