Most cited article - PubMed ID 32703268
Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
- MeSH
- Anthelmintics * pharmacology metabolism pharmacokinetics MeSH
- Biotransformation MeSH
- Nematoda * drug effects metabolism enzymology MeSH
- Drug Resistance * MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Anthelmintics * MeSH
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
- Keywords
- AKR, Drug-resistance, Drug-susceptibility, Expression profile, Haemonchus contortus, Phylogenetic analysis,
- MeSH
- Aldehyde Reductase genetics metabolism MeSH
- Aldo-Keto Reductases * genetics metabolism MeSH
- Anthelmintics pharmacology MeSH
- Benzimidazoles pharmacology MeSH
- Caenorhabditis elegans genetics drug effects enzymology MeSH
- Phylogeny * MeSH
- Haemonchus * genetics drug effects enzymology MeSH
- Drug Resistance genetics MeSH
- Humans MeSH
- Mebendazole * pharmacology analogs & derivatives MeSH
- Sheep MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aldehyde Reductase MeSH
- Aldo-Keto Reductases * MeSH
- Anthelmintics MeSH
- Benzimidazoles MeSH
- flubendazole MeSH Browser
- Mebendazole * MeSH
Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.
- Keywords
- Anthelmintics, Strongyloides, drug biotransformation, helminths, inhibitors,
- MeSH
- Anthelmintics * pharmacology therapeutic use MeSH
- Haemonchus * MeSH
- Glycyrrhetinic Acid * pharmacology MeSH
- Larva MeSH
- Mebendazole pharmacology therapeutic use MeSH
- Vitamin K 3 pharmacology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anthelmintics * MeSH
- flubendazole MeSH Browser
- Glycyrrhetinic Acid * MeSH
- Mebendazole MeSH
- Vitamin K 3 MeSH
Albendazole (ABZ) is an anthelmintic frequently used to treat haemonchosis, a common parasitosis of ruminants caused by the gastrointestinal nematode Haemonchus contortus. This parasite is able to protect itself against ABZ via the formation of inactive ABZ-glycosides. The present study was designed to deepen the knowledge about the role of UDP-glycosyltransferases (UGTs) in ABZ glycosylation in H. contortus. The induction effect of phenobarbital, a classical inducer of UGTs, as well as ABZ and ABZ-sulphoxide (ABZSO, the main active metabolite of ABZ) on UGTs expression and UGT activity toward ABZ was studied ex vivo in isolated adult nematodes. The effect of three potential UGT inhibitors (5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine and sulfinpyrazone) on ABZ glycosylation was tested. Pre-incubation of nematodes with ABZ and ABZSO led to increased expression of several UGTs as well as ABZ-glycosides formation in subsequent treatment. Phenobarbital also induced UGTs expression, but did not affect ABZ biotransformation. In the nematode's subcellular fraction, sulfinpyrazone inhibited UGT activity toward ABZ, although no effect of other inhibitors was observed. The inhibitory potential of sulfinpyrazone on the formation of ABZ-glycosides was also proved ex vivo in living nematodes. The obtained results confirmed the role of UGTs in ABZ biotransformation in H. contortus adults and revealed sulfinpyrazone as a potent inhibitor of ABZ glycosylation in this parasite. The possible use of sulfinpyrazone with ABZ in combination therapy merits further research.
- Keywords
- Anthelmintic resistance, Anthelmintics biotransformation, Benzimidazoles, Detoxification, Gene expression, Glycosylated metabolites, Glycosylation, Nematodes, UGT inhibitors, UHPLC-MS/MS,
- MeSH
- Albendazole MeSH
- Anthelmintics * therapeutic use MeSH
- Phenobarbital metabolism pharmacology therapeutic use MeSH
- Glycosides metabolism pharmacology therapeutic use MeSH
- Glycosyltransferases MeSH
- Haemonchus * MeSH
- Nematoda * MeSH
- Sheep Diseases * drug therapy MeSH
- Sheep MeSH
- Sulfinpyrazone metabolism pharmacology therapeutic use MeSH
- Uridine Diphosphate MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Albendazole MeSH
- Anthelmintics * MeSH
- Phenobarbital MeSH
- Glycosides MeSH
- Glycosyltransferases MeSH
- Sulfinpyrazone MeSH
- Uridine Diphosphate MeSH
Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.
- Keywords
- anthelmintics, antioxidant enzymes, benzimidazoles, biotransformation, isoflavonoids, pharmaceuticals,
- MeSH
- Biological Transport MeSH
- Biotransformation MeSH
- Fenbendazole metabolism pharmacokinetics MeSH
- Glycine max metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fenbendazole MeSH
The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.
- Keywords
- UGT, UHPLC-MS, anthelmintics, biotransformation, drug resistance, gene expression, nematode,
- Publication type
- Journal Article MeSH