Most cited article - PubMed ID 33817117
Analysis of Physiological Parameters of Desulfovibrio Strains from Individuals with Colitis
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
- Keywords
- Anaerobic bacteria, Cytotoxicity assays, Gut microbiome, Inflammatory bowel disease, Microbial pathogenesis, Microbiota-host interaction,
- Publication type
- Journal Article MeSH
- Review MeSH
Colorectal cancer is influenced by genetic mutations, lifestyle factors, and diet, particularly high fat intake, which raises bile acid levels in the intestinal lumen. This study hypothesized that bile acids contribute to tumorigenesis by disrupting ion transport and ATPase activity in the intestinal mucosa. The effects of 3-sulfo-taurolithocholic acid (TLC-S) on ATPase activity were investigated in colorectal cancer samples from 10 patients, using adjacent healthy tissue as controls, and in rodent liver function. ATPase activity was measured spectrophotometrically by determining inorganic phosphorus (Pi) in postmitochondrial fractions. Ca2+ dynamics were assessed in isolated mouse hepatocytes with fluorescence imaging, and rat liver mitochondria were studied using polarographic methods to evaluate respiration and oxidative phosphorylation. TLC-S increased Na+/K+ ATPase activity by 1.5 times in colorectal cancer samples compared to controls (p ≤ 0.05). In healthy mucosa, TLC-S decreased Mg2+ ATPase activity by 3.6 times (p ≤ 0.05), while Mg2+ ATPase activity in cancer tissue remained unchanged. TLC-S had no significant effect on Ca2+ ATPase activity in healthy colon mucosa but showed a trend toward decreased activity in cancer tissue. In rat liver, TLC-S decreased Ca2+ ATPase and Na+/K+ ATPase activities while increasing basal Mg2+ ATPase activity (p ≤ 0.05). Additionally, TLC-S induced cytosolic Ca2+ signals in mouse hepatocytes, partially attenuated by NED-19, an NAADP antagonist (p ≤ 0.05). TLC-S also reduced the V3 respiration rate of isolated rat liver mitochondria during α-ketoglutarate oxidation. These findings suggest that TLC-S modulates ATPase activity differently in cancerous and healthy colon tissues, playing a role in colorectal cancer development. In rat liver, TLC-S affects mitochondrial activity and ATPase function, contributing to altered cytosolic calcium levels, providing insight into the mechanistic effects of bile acids on colorectal cancer and liver function.
- Keywords
- Ca2+ ATPase, Na+/K+ ATPase, basal Mg2+ ATPase, bile acid, colon mucosae, colorectal cancer,
- Publication type
- Journal Article MeSH
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
- Keywords
- 16S rRNA gene sequencing, gut dysbiosis, gut microbiota, inflammatory bowel disease, sulfate-reducing bacteria, ulcerative colitis,
- Publication type
- Journal Article MeSH
Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.
- Keywords
- Gut microbiome, Hydrogen sulfide, Sulfate-reducing bacteria, Sulfur assimilation, Sulfur metabolism, Toxicity,
- Publication type
- Journal Article MeSH
- Scoping Review MeSH
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the "acid store" of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients' and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients' colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer -8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive "acidic store" (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the "acidic store" (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
- Keywords
- ATPase, Ca2+, Ca2+ ATPase, Ca2+ ATPase PM, EPR, NAADP, Na+/K+ ATPase, acidic store, autophagy, basal ATPase activity, cancer,
- Publication type
- Journal Article MeSH
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
- Keywords
- DAPI, Desulfovibrio, FISH, IBD, SRB, SRM, SRP, anaerobic microorganisms, fluorescence microscopy, gut microbiota, habitats, identification, microscopy, sulfate reduction,
- MeSH
- Bacteria metabolism MeSH
- Ecosystem * MeSH
- Humans MeSH
- Metagenomics MeSH
- Microscopy methods MeSH
- Oxidation-Reduction MeSH
- Sulfates metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Sulfates MeSH
Meta-analysis is a statistical process summarizing comparable data from a number of scientific papers. The use of meta-analysis in microbiology allows decision-making that has an impact on public health policy. It can happen that the primary researches come to different conclusions, although these are targeted with the same research question. It is, therefore, inevitable to have the means to systematically evaluate information and compare research results. Ulcerative colitis together with Crohn's disease are among the two main inflammatory bowel diseases. This chronic disease of the gastrointestinal tract, with an as yet unclear etiology, is presented by an uncontrolled inflammatory immune response in genetically predisposed individuals to as yet undefined environmental factors in interaction with the intestinal microbiota itself. In patients with ulcerative colitis (UC), changes in the composition and relative abundance of microorganisms could be observed. Sulfate-reducing bacteria (SRB), which commonly occur in the large intestine as part of the commensal microbiota of animals and humans involved in the pathogenesis of the disease, have been shown to occur. SRB are anaerobic organisms affecting short-chain fatty acid metabolism. This work outlines the perspectives of the use of meta-analysis for UC and changes in the representation of intestinal organisms in these patients.
- Keywords
- hydrogen sulfide, inflammatory bowel diseases, intestinal microbiome, meta-analysis, sulfate-reducing bacteria, ulcerative colitis,
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: Increased numbers of sulfate-reducing bacteria (SRB) are often found in the feces of people and animals with inflammatory bowel disease. The final products of their metabolism are hydrogen sulfide and acetate, which are produced during dissimilatory sulfate reduction process. OBJECTIVES: The aim of the study was to monitor processes concerning sulfate reduction microbial metabolisms, including: the main microbial genera monitoring and their hydrogen sulfide production in the intestines of healthy and not healthy individuals, phylogenetic analysis of SRB isolates, cluster analysis of SRB physiological and biochemical parameters, SRB growth kinetic parameters calculation, same as the application of the two-factor dispersion analysis for finding relationship between SRB biomass accumulation, temperature and pH. Feces samples from healthy people and patients with colitis were used for isolation of sulfate-reducing microbial communities. METHODS: Microbiological, biochemical, biophysical, molecular biology methods, and statistical processing of the results have been used for making an evaluation of gained results. RESULTS: Two dominant SRB morphotypes differed in colony size and quantitative ratio in the feces of healthy and colitis patients were observed and identified. In the feces of healthy people, 93% of SRB of morphotype I prevailed (Desulfovibrio) while morphotype II made only 7% (Desulfomicrobium); in the feces of patients with colitis, the ratio of these morphotypes was 99:1, respectively. Hydrogen sulfide concentrations are also higher in the feces of people with colitis and certain synergy effects exist among acetate produced by SRB. CONCLUSIONS: The study results brought important findings concerning colony environments with developed colitis and these findings can lead to the development of possible risk indicators of ulcerative colitis prevalence.
- Keywords
- Dissimilatory sulfate reduction, Hydrogen sulfide, Sulfate-reducing bacteria, Toxicity, Ulcerative colitis,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Hydrogen sulfide is the final product of sulfate-reducing bacteria metabolism. Its high concentration in the gut can affect adversely bowel environment and intestinal microbiota by toxicity and pH lowering. AIM OF REVIEW: The aim of the review was to give observations related to the properties of bacterial communities inhabiting the gut, with the emphasis on sulfate-reducing bacteria and lactic acid bacteria. KEY SCIENTIFIC CONCEPTS OF REVIEW: The conduction of meta-analysis was another goal, since it gave statistical observation of the relevant studies. The review literature consisted of more than 160 studies, published from 1945 to 2019. Meta-analysis included 16 studies and they were chosen from the Web of Science database. The systematic review gave important information about the development of gut inflammation, with emphasis on sulfate-reducing and lactic acid bacteria. Oppositely from sulfate-reducing bacteria, probiotic properties of lactic acid bacteria are effective inhibitors against inflammatory bowel disease development, including ulcerative colitis. These facts were confirmed by the conducted meta-analysis. The results and observations gained from the systematic review represent the emphasized importance of gut microbiota for bowel inflammation. On the other side, it should be stated that more studies in the future will provide even better confirmations.
- Keywords
- Bowel inflammations, Hydrogen sulfide, Lactic acid bacteria, Probiotics, Sulfate-reducing bacteria, Toxicity, Ulcerative colitis,
- Publication type
- Journal Article MeSH
- Review MeSH
The number of cases of oral cavity inflammation in the population has been recently increasing, with periodontitis being the most common disease. It is caused by a change in the microbial composition of the biofilm in the periodontal pockets. In this context, an increased incidence of sulfate-reducing bacteria (SRB) in the oral cavity has been found, which are a part of the common microbiome of the mouth. This work is devoted to the description of the diversity of SRB isolated from the oral cavity. It also deals with the general description of periodontitis in terms of manifestations and origin. It describes the ability of SRB to participate in its development, although their effect on periodontal inflammation is not fully understood. The production of hydrogen sulfide as a cytochrome oxidase inhibitor may play a role in the etiology. A meta-analysis was conducted based on studies of the occurrence of SRB in humans.
- Keywords
- SRB, dental plaque, hydrogen sulfide, meta-analysis, oral cavity, periodontal disease, periodontitis, sulfate, sulfate-reducing bacteria,
- Publication type
- Journal Article MeSH
- Review MeSH