Nejvíce citovaný článek - PubMed ID 33873591
Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia
The evolution of intracellular endosymbiosis marks a major transition in the biology of the host and endosymbiont. Yet, how adaptation manifests in the genomes of the participants remains relatively understudied. We investigated this question by sequencing the genomes of Tetrahymena utriculariae, a commensal of the aquatic carnivorous bladderwort Utricularia reflexa, and its intracellular algae, Micractinium tetrahymenae. We discovered an expansion in copy number and negative selection in a TLD domain-bearing gene family in the genome of T. utriculariae, identifying it as a candidate for being an adaptive response to oxidative stress resulting from the physiology of its endosymbionts. We found that the M. tetrahymenae genome is larger than those of other Micractinium and Chlorella and contains a greater number of rapidly expanding orthogroups. These were enriched for Gene Ontology terms relevant to the regulation of intracellular signal transduction and cellular responses to stress and stimulus. Single-exon tandem repeats were overrepresented in paralogs belonging to these rapidly expanding orthogroups, which implicates long terminal repeat retrotransposons (LTRs) as potential agents of adaptation. We additionally performed a comparative transcriptomic analysis of M. tetrahymenae in a free-living state and in endosymbiosis with T. utriculariae and discovered that the genes that are differentially expressed were enriched for pathways that evidence shifts in energy generation and storage and in cellular protection strategies. Together, our results elucidate the axes along which the participants must adapt in this young endosymbiosis and highlight evolutionary responses to stress as a shared trend.
- Klíčová slova
- LTR, ciliate, endosymbiosis, genome, green algae, stress, tandem gene duplications,
- MeSH
- biologická evoluce MeSH
- fyziologická adaptace * genetika MeSH
- fyziologický stres genetika MeSH
- molekulární evoluce MeSH
- symbióza * genetika MeSH
- Tetrahymena * genetika MeSH
- Publikační typ
- časopisecké články MeSH
Carnivorous plants of the genus Utricularia (bladderwort) form modified leaves into suction bladder traps. The bladders are metabolically active plant tissue with high rates of mitochondrial respiration (RD). In general, plants possess two mitochondrial electron transport pathways to reduce oxygen to water: cytochrome and an alternative. Due to the high metabolic rate in the bladders, it is tempting to assume that the bladders prefer the cytochrome c oxidative pathway. Surprisingly, we revealed that alternative oxidase (AOX), which yields only a little ATP, is much more abundant in the bladders of Utricularia reflexa in comparison with the shoots. This pattern is similar to the carnivorous plants with passive pitcher traps (e.g. Sarracenia, Nepenthes) and seems to be widespread across many carnivorous taxa. The exact role of AOX in the traps of carnivorous plants remains to be investigated.
- Klíčová slova
- Alternative oxidase, bladderwort, carnivorous plants, cytochrome c oxidase, light harvesting antennae, respiration,
- MeSH
- adenosintrifosfát MeSH
- cytochromy c * MeSH
- kyslík MeSH
- listy rostlin * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- cytochromy c * MeSH
- kyslík MeSH
- voda MeSH
BACKGROUND AND AIMS: Aquatic carnivorous plants have typical rootless linear shoots bearing traps and exhibit steep physiological polarity with rapid apical growth. The aim was to analyse auxin and cytokinin metabolites in traps, leaves/shoots and shoot apices in several species of genera Aldrovanda and Utricularia to elucidate how the hormonal profiles reflect the specific organ functions and polarity. METHODS: The main auxin and cytokinin metabolites were analysed in miniature samples (>2 mg dry weight) of different organs of Aldrovanda vesiculosa and six Utricularia species using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. KEY RESULTS: Total contents of biologically active forms (free bases, ribosides) of all four main endogenously occurring cytokinin types were consistently higher in traps than in leaves in four Utricularia species with monomorphic shoots and/or higher than in shoots in two Utricularia species with dimorphic shoots. In Aldrovanda traps, the total content of different cytokinin forms was similar to or lower than that in shoots. In U. australis leaves, feeding on prey increased all cytokinin forms, while no consistent differences occurred in Aldrovanda. In four aquatic Utricularia species with monomorphic shoots, the content of four auxin forms was usually higher in traps than in leaves. Zero IAA content was determined in U. australis leaves from a meso-eutrophic site or when prey-fed. CONCLUSIONS: Different cytokinin and auxin profiles estimated in traps and leaves/shoots of aquatic carnivorous plants indicate an association with different dominant functions of these organs: nutrient uptake by traps versus photosynthetic function of traps. Interplay of cytokinins and auxins regulates apical dominance in these plants possessing strong polarity.
- Klíčová slova
- Aldrovanda vesiculosa, Utricularia spp, Droseraceae, Lentibulariaceae, Phytohormone profiles, apices, aquatic rootless plants, leaves, physiological polarity, traps,
- MeSH
- cytokininy metabolismus MeSH
- Droseraceae * fyziologie MeSH
- hluchavkotvaré * MeSH
- kyseliny indoloctové metabolismus MeSH
- Magnoliopsida * fyziologie MeSH
- masožravé rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
- Klíčová slova
- Dionaea, Drosera, Nepenthes, Carnivorous plant, co-option, cost–benefit relationships, digestive enzymes, evolution of carnivory, hunting cycle, mineral nutrient economy, regulation of enzyme secretion, terrestrial and aquatic species,
- MeSH
- fotosyntéza MeSH
- listy rostlin MeSH
- masožravci * MeSH
- rostliny * genetika MeSH
- živiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Two aquatic moss species, Calliergon megalophyllum and Drepanocladus sordidus (Amblystegiaceae, Bryophyta), which had been considered extinct in the Czech Republic, were found in the Třeboň Basin, South Bohemia, in 2016-2017. They co-occurred in extensive reed- and sedge-dominated fen pools with humic water on the shore of an old fishpond and the former species was also discovered in a small humic pool in an old shallow sand-pit. The new Czech sites of these rare boreal species represent one of the southernmost known outposts within their entire European range. Previously, the two species were only known from single records in the Czech Republic from the late 19th and early 20th centuries. To confirm our morphological observations, we used phylogenetic analyses of DNA sequence variation in four chloroplast loci (atpB-rbcL, trnL-trnF, rpl16, trnG) and one nuclear region, the internal transcribed spacers of ribosomal DNA (ITS). We found (1) monophyly of all Calliergon megalophyllum specimens tested; (2) based on chloroplast DNA sequences, monophyly among all Drepanocladus sordidus specimens and representatives of Pseudocalliergon turgescens and P. lycopodioides moss species; (3) based on nuclear ITS sequences, monophyly of all original D. sordidus specimens. These results corroborate morphological studies and thus confirm the existence of natural sites for the studied moss species in the Třeboň Basin, South Bohemia, Czech Republic.
- Klíčová slova
- Aquatic mosses, Drepanocladus tenuinervis, Hypnum moldavicum, Třeboň Basin, glacial relicts, southern distribution, threatening,
- Publikační typ
- časopisecké články MeSH
In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.
- Klíčová slova
- Genlisea, RNA-sequencing, algae commensalism, lobster pot trapping, metatranscriptomics, plant carnivory, plant-microbe interaction, whole-genome gene transcription analysis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE: This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS: Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
- Klíčová slova
- Action potential, Dionaea, Drosera, Nepenthes, Venus flytrap, botanical carnivory, carnivorous plant, cost–benefit, electrical signalling, jasmonates,
- MeSH
- biologická evoluce * MeSH
- biologické modely * MeSH
- Droseraceae fyziologie MeSH
- fyziologie rostlin * MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.
- Klíčová slova
- 15N2 labelling, Aldrovanda vesiculosa, N nutrition, U. australis, U. intermedia, U. reflexa, Utricularia vulgaris, aquatic carnivorous plants, daily nitrogen gain, nitrogen fixation, periphyton, traps,
- MeSH
- amoniové sloučeniny analýza MeSH
- Bacteria genetika izolace a purifikace metabolismus MeSH
- bakteriální RNA chemie genetika MeSH
- Droseraceae metabolismus mikrobiologie MeSH
- dusík metabolismus MeSH
- ekologie MeSH
- ekosystém MeSH
- fixace dusíku * MeSH
- izotopy dusíku MeSH
- Magnoliopsida metabolismus mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza RNA MeSH
- voda metabolismus MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- bakteriální RNA MeSH
- dusík MeSH
- izotopy dusíku MeSH
- RNA ribozomální 16S MeSH
- voda MeSH
UNLABELLED: BACKROUND AND AIMS: It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. METHODS: Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). KEY RESULTS: Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). CONCLUSIONS: According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.
- Klíčová slova
- Carnivorous plant, Drosera capensis, cape sundew, cost/benefit, digestive enzymes, fruit flies, nitrogen, phosphorus, photosynthesis, sundew,
- MeSH
- chlorofyl a MeSH
- chlorofyl analýza MeSH
- Drosera fyziologie MeSH
- Drosophila melanogaster MeSH
- dusík metabolismus MeSH
- enzymy metabolismus MeSH
- fosfor metabolismus MeSH
- fotosyntéza fyziologie MeSH
- listy rostlin fyziologie MeSH
- masožravci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- dusík MeSH
- enzymy MeSH
- fosfor MeSH
Aquatic Utricularia species usually grow in standing, nutrient-poor humic waters. They take up all necessary nutrients either directly from the water by rootless shoots or from animal prey by traps. The traps are hollow bladders, 1-6 mm long with elastic walls and have a mobile trap door. The inner part of the trap is densely lined with quadrifid and bifid glands and these are involved in the secretion of digestive enzymes, resorption of nutrients and pumping out the water. The traps capture small aquatic animals but they also host a community of microorganisms considered as commensals. How do these perfect traps function, kill and digest their prey? How do they provide ATP energy for their demanding physiological functions? What are the nature of the interactions between the traps and the mutualistic microorganisms living inside as commensals? In this mini review, all of these questions are considered from an ecophysiologist's point of view, based on the most recent literature data and unpublished results. A new concept on the role of the commensal community for the plants is presented.
- MeSH
- ekosystém * MeSH
- kyslík metabolismus MeSH
- Magnoliopsida enzymologie fyziologie MeSH
- potravní řetězec MeSH
- voda fyziologie MeSH
- vodní organismy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
- voda MeSH