Most cited article - PubMed ID 34199249
Zn-0.8Mg-0.2Sr (wt.%) Absorbable Screws-An In-Vivo Biocompatibility and Degradation Pilot Study on a Rabbit Model
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
- Keywords
- Biocompatibility, Biodegradable metals, Bone fracture healing, Bone tissue engineering, Guided bone regeneration, Zinc,
- Publication type
- Journal Article MeSH
- Review MeSH
In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.
- Keywords
- Biodegradable metals, Characterization, ECAP, Mechanism, Zinc-based alloy,
- Publication type
- Journal Article MeSH
In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between those characteristics was found. Microstructures of individual materials possessed differences in grain size, where the grain size decreased with the intensified conditions (milling speed and time). However, the mutual relation between grain size and compressive strength was not linear. This was caused by the effect of other factors, such as texture, intermetallic phases, and pores. Material texture affects the mechanical properties by a different activity ratio between basal and pyramidal
- Keywords
- EBSD, ball milling, biodegradable metals, compressive properties, extrusion, powder metallurgy, zinc, µCT,
- Publication type
- Journal Article MeSH
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure-the removal of the plates and screws-can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.
- Keywords
- absorbable metals, alloy accumulation, biocompatibility, in vivo, internal organs, magnesium, strontium, systemic reactions, toxicity, zinc,
- MeSH
- Tibial Fractures * metabolism surgery MeSH
- Magnesium chemistry pharmacokinetics pharmacology MeSH
- Rabbits MeSH
- Humans MeSH
- Alloys * chemistry pharmacokinetics pharmacology MeSH
- Strontium chemistry pharmacokinetics pharmacology MeSH
- Materials Testing * MeSH
- Tibia metabolism pathology MeSH
- Absorbable Implants * MeSH
- Zinc chemistry pharmacokinetics pharmacology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Magnesium MeSH
- Alloys * MeSH
- Strontium MeSH
- Zinc MeSH