Nejvíce citovaný článek - PubMed ID 9582111
PCR has become one of the most valuable techniques currently used in bioscience, diagnostics and forensic science. Here we review the history of PCR development and the technologies that have evolved from the original PCR method. Currently, there are two main areas of PCR utilization in bioscience: high-throughput PCR systems and microfluidics-based PCR devices for point-of-care (POC) applications. We also discuss the commercialization of these techniques and conclude with a look into their modifications and use in innovative areas of biomedicine. For example, real-time reverse transcription PCR is the gold standard for SARS-CoV-2 diagnoses. It could also be used for POC applications, being a key component of the sample-to-answer system.
- Klíčová slova
- COVID-19, PCR, RNA virus diagnoses, digital PCR, microfluidics, point-of-care diagnostics, portable systems, reverse transcription PCR,
- MeSH
- Betacoronavirus genetika izolace a purifikace MeSH
- COVID-19 MeSH
- design vybavení MeSH
- klinické laboratorní techniky přístrojové vybavení metody MeSH
- koronavirové infekce diagnóza virologie MeSH
- lidé MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- pandemie MeSH
- polymerázová řetězová reakce přístrojové vybavení metody MeSH
- SARS-CoV-2 MeSH
- testování na COVID-19 MeSH
- virová pneumonie diagnóza virologie MeSH
- vyšetření u lůžka MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Infectious diseases, such as the most recent case of coronavirus disease 2019, have brought the prospect of point-of-care (POC) diagnostic tests into the spotlight. A rapid, accurate, low-cost, and easy-to-use test in the field could stop epidemics before they develop into full-blown pandemics. Unfortunately, despite all the advances, it still does not exist. Here, we critically review the limited number of prototypes demonstrated to date that is based on a polymerase chain reaction (PCR) and has come close to fulfill this vision. We summarize the requirements for the POC-PCR tests and then go on to discuss the PCR product-detection methods, the integration of their functional components, the potential applications, and other practical issues related to the implementation of lab-on-a-chip technologies. We conclude our review with a discussion of the latest findings on nucleic acid-based diagnosis.
- Klíčová slova
- COVID-19 diagnoses, Future of PCR, Microfluidics, Miniaturization, Point of care, Polymerase chain reaction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The global risk of viral disease outbreaks emphasizes the need for rapid, accurate, and sensitive detection techniques to speed up diagnostics allowing early intervention. An emerging field of microfluidics also known as the lab-on-a-chip (LOC) or micro total analysis system includes a wide range of diagnostic devices. This review briefly covers both conventional and microfluidics-based techniques for rapid viral detection. We first describe conventional detection methods such as cell culturing, immunofluorescence or enzyme-linked immunosorbent assay (ELISA), or reverse transcription polymerase chain reaction (RT-PCR). These methods often have limited speed, sensitivity, or specificity and are performed with typically bulky equipment. Here, we discuss some of the LOC technologies that can overcome these demerits, highlighting the latest advances in LOC devices for viral disease diagnosis. We also discuss the fabrication of LOC systems to produce devices for performing either individual steps or virus detection in samples with the sample to answer method. The complete system consists of sample preparation, and ELISA and RT-PCR for viral-antibody and nucleic acid detection, respectively. Finally, we formulate our opinions on these areas for the future development of LOC systems for viral diagnostics.
- Klíčová slova
- Commercialization, Immunoassays, LOC, Microfluidic, Nucleic acid amplification, Viral detection,
- MeSH
- biosenzitivní techniky MeSH
- design vybavení MeSH
- DNA virů analýza MeSH
- ELISA MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- laboratoř na čipu * MeSH
- lidé MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- nukleové kyseliny analýza MeSH
- virové nemoci diagnóza MeSH
- vyšetření u lůžka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA virů MeSH
- nukleové kyseliny MeSH
Nucleic acid amplification for the detection of infectious diseases, food pathogens, or assessment of genetic disorders require a laboratory setting with specialized equipment and technical expertise. Isothermal deoxyribonucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP), exhibit characteristics ideal for point-of-care (POC) applications, since their instrumentation is simpler in comparison with the standard method of polymerase chain reaction. Other key advantages of LAMP are robustness and the production of pyrophosphate in the presence of the target gene, enabling to detect the reaction products using the naked eye. Polymerase inhibitors, presented in clinical samples, do not affect the amplification process, making LAMP suitable for a simple sample-to-answer diagnostic systems with simplified sample preparation. In this review, we discuss the trends in miniaturized LAMP techniques, such as microfluidic, paper-based, and digital with their advantages and disadvantages, especially for POC applications alongside our opinion of the future development of miniaturized LAMP.
- Klíčová slova
- Digital LAMP, LAMP, Microfluidic, Multi gene detection, PCR, POC, Paper-based LAMP, Single gene detection,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Here we report one of the smallest real-time polymerase chain reaction (PCR) systems to date with an approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in the form of virtual reaction chambers (VRCs) where a ≈200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate the PCR performance. The standard curve slope was -3.02 ± 0.16 cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of 0.91 ± 0.05 per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics.
- MeSH
- hemaglutininové glykoproteiny viru chřipky genetika MeSH
- kvantitativní polymerázová řetězová reakce * přístrojové vybavení metody MeSH
- lidé MeSH
- virus chřipky A, podtyp H7N9 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemaglutininové glykoproteiny viru chřipky MeSH