Tetranychus urticae is an important pest that causes severe damage to a wide variety of plants and crops, leading to a substantial productivity loss. Previous research has been focused on plant defence response to T. urticae to improve plant resistance. However, plant growth, development and reproduction throughout the infestation process have not been previously studied. Through physiological, biochemical, transcriptomic and hormonomic evaluation, we uncover the molecular mechanisms directing the defence-growth trade-off established in Arabidopsis upon T. urticae infestation. Upon mite attack, plants suffer an adaptation process characterized by a temporal separation between the defence and growth responses. Jasmonic and salicylic acids regulate the main defence responses in combination with auxin and abscisic acid. However, while the reduction of both auxin signalling and gibberellin, cytokinin and brassinosteroid biosynthesis lead to initial growth arrest, increasing levels of growth hormones at later stages enables growth restart. These alterations lead to a plant developmental delay that impacts both seed production and longevity. We demonstrate that coordinated trade-offs determine plant adaptation and survival, revealing mite infestation has a long-lasting effect negatively impacting seed viability. This study provides additional tools to design pest management strategies that improve resistance without penalty in plant fitness.
- MeSH
- Arabidopsis * fyziologie parazitologie genetika MeSH
- cyklopentany metabolismus MeSH
- cytokininy metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- nemoci rostlin parazitologie MeSH
- oxylipiny metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- Tetranychidae * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.
- Klíčová slova
- CaWRKY3, Capsicum annum, Ralstonia solanacearum, Immunity, Transcription factor,
- MeSH
- acetáty farmakologie MeSH
- Capsicum * genetika imunologie mikrobiologie MeSH
- cyklopentany metabolismus MeSH
- ethyleny metabolismus MeSH
- imunita rostlin * MeSH
- kyselina salicylová metabolismus MeSH
- nemoci rostlin * mikrobiologie imunologie genetika MeSH
- odolnost vůči nemocem genetika MeSH
- oxylipiny metabolismus MeSH
- Ralstonia solanacearum * fyziologie MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- transkripční faktory * genetika metabolismus MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- cyklopentany MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- kyselina salicylová MeSH
- methyl jasmonate MeSH Prohlížeč
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
- rostlinné proteiny * MeSH
- transkripční faktory * MeSH
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
- MeSH
- biologická evoluce MeSH
- Chlorophyta metabolismus genetika MeSH
- cyklopentany metabolismus MeSH
- cytokininy * metabolismus MeSH
- ethyleny metabolismus MeSH
- fylogeneze * MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- oxylipiny metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- signální transdukce MeSH
- Viridiplantae metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy * MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové * MeSH
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.
- Klíčová slova
- field, heat stress, lipidome, metabolome, phytohormone, proteome, seed development, stress attenuation, yield,
- MeSH
- fyziologický stres MeSH
- hrách setý * metabolismus MeSH
- kyselina salicylová * farmakologie metabolismus MeSH
- rostliny metabolismus MeSH
- semena rostlinná metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina salicylová * MeSH
Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.
- Klíčová slova
- mycorrhizal fungi, parasitic plants, plant hormones, rhizosphere, root exudates, small-molecule communication, strigolactones,
- MeSH
- chromatografie kapalinová MeSH
- cytokininy metabolismus MeSH
- heterocyklické sloučeniny tricyklické metabolismus MeSH
- hmotnostní spektrometrie MeSH
- houby fyziologie MeSH
- interakce hostitele a patogenu MeSH
- kořeny rostlin metabolismus mikrobiologie MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- laktony metabolismus MeSH
- mykorhiza fyziologie MeSH
- Orobanche růst a vývoj mikrobiologie MeSH
- tabák růst a vývoj mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- GR24 strigolactone MeSH Prohlížeč
- heterocyklické sloučeniny tricyklické MeSH
- indoleacetic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- laktony MeSH
Plant hormones regulate numerous developmental and physiological processes. Abiotic stresses considerably affect production and distribution of phytohormones as the stress signal triggers. The homeostasis of plant hormones is controlled by their de novo synthesis and catabolism. The aim of this work was to analyse the contents of total and individual groups of endogenous cytokinins (CKs) as well as indole-3-acetic acid (IAA) in AtCKX overexpressing centaury plants grown in vitro on graded NaCl concentrations (0, 50, 100, 150, 200 mM). The levels of endogenous stress hormones including abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) were also detected. The elevated contents of total CKs were found in all analysed centaury shoots. Furthermore, increased amounts of all five CK groups, as well as enhanced total CKs were revealed on graded NaCl concentrations in non-transformed and AtCKX roots. All analysed AtCKX centaury lines exhibited decreased amounts of endogenous IAA in shoots and roots. Consequently, the IAA/bioactive CK forms ratios showed a significant variation in the shoots and roots of all AtCKX lines. In shoots and roots of both non-transformed and AtCKX transgenic centaury plants, salinity was associated with an increase of ABA and JA and a decrease of SA content.
- MeSH
- Centaurium růst a vývoj metabolismus MeSH
- cyklopentany analýza metabolismus MeSH
- cytokininy analýza metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina abscisová analýza metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové analýza metabolismus MeSH
- oxylipiny analýza metabolismus MeSH
- regulátory růstu rostlin analýza metabolismus MeSH
- solný stres * MeSH
- techniky in vitro MeSH
- výhonky rostlin růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy MeSH
- indoleacetic acid MeSH Prohlížeč
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
Changes in the environment as a result of industrialisation and urbanisation impact negatively on plant growth and crop production. Cadmium (Cd) is one of the most dangerous metals that enters the food chain, with toxic effects on plants and human health. This study evaluated the potential of Silene sendtneri as a novel hyperaccumulator and the role of seed priming in tolerance and accumulation rate of Cd. The effect of different priming agents on germination performance, root growth, seedling development, metal uptake and accumulation, antioxidant defences including enzymatic and non-enzymatic antioxidants has been assessed. Seed priming using silicic acid, proline alone or in combination with salicylic acid- enhanced germination, seedling development, and root growth under Cd stress. The same priming treatments induced an increase of water content in shoots and roots when plants were exposed to Cd. The enzymatic antioxidant response was specific for the priming agent used. An increase in ferulic acid and rutin in shoots was related to the increase of Cd concentration in the medium. The concentration of malic and oxalic acid increased significantly in shoots of plants grown on high Cd concentrations compared to low Cd concentrations. Silene sendtneri can accumulate significant levels of Cd with enhanced accumulation rate and tolerance when seeds are primed. The best results are obtained by seed priming using 1% silicic acid, proline and salicylic acid.
- Klíčová slova
- Antioxidant defence potential, Cd stress, Organic acids, Oxidative stress, Phenolics, Root growth, Silene sendtneri,
- MeSH
- bioakumulace MeSH
- kadmium * metabolismus MeSH
- klíčení MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina křemičitá metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- látky znečišťující půdu * metabolismus MeSH
- prolin metabolismus MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- Silene * růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium * MeSH
- kyselina křemičitá MeSH
- kyselina salicylová MeSH
- látky znečišťující půdu * MeSH
- prolin MeSH
Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA), indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity.
- Klíčová slova
- Phytophthora cinnamomi, metabolomics, proteomics, sweet chestnut,
- MeSH
- cyklopentany metabolismus MeSH
- dřevo MeSH
- Fagaceae metabolismus mikrobiologie MeSH
- homeostáza MeSH
- kořeny rostlin MeSH
- kyselina salicylová metabolismus MeSH
- metabolomika MeSH
- nemoci rostlin mikrobiologie MeSH
- oxylipiny metabolismus MeSH
- Phytophthora patogenita MeSH
- proteomika MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce MeSH
- vazebná místa MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
Alterations of hydrogen peroxide (H2O2) levels have a profound impact on numerous signaling cascades orchestrating plant growth, development, and stress signaling, including programmed cell death. To expand the repertoire of known molecular mechanisms implicated in H2O2 signaling, we performed a forward chemical screen to identify small molecules that could alleviate the photorespiratory-induced cell death phenotype of Arabidopsisthaliana mutants lacking H2O2-scavenging capacity by peroxisomal catalase2. Here, we report the characterization of pakerine, an m-sulfamoyl benzamide from the sulfonamide family. Pakerine alleviates the cell death phenotype of cat2 mutants exposed to photorespiration-promoting conditions and delays dark-induced senescence in wild-type Arabidopsis leaves. By using a combination of transcriptomics, metabolomics, and affinity purification, we identified abnormal inflorescence meristem 1 (AIM1) as a putative protein target of pakerine. AIM1 is a 3-hydroxyacyl-CoA dehydrogenase involved in fatty acid β-oxidation that contributes to jasmonic acid (JA) and salicylic acid (SA) biosynthesis. Whereas intact JA biosynthesis was not required for pakerine bioactivity, our results point toward a role for β-oxidation-dependent SA production in the execution of H2O2-mediated cell death.
- Klíčová slova
- H2O2 signaling, abnormal inflorescence meristem 1, catalase2-deficient Arabidopsis, chemical genetics, photorespiration,
- MeSH
- Arabidopsis cytologie účinky léků genetika metabolismus MeSH
- buněčná smrt účinky léků MeSH
- buněčné dýchání účinky léků genetika MeSH
- cyklopentany metabolismus MeSH
- fotosyntéza účinky léků genetika MeSH
- fyziologický stres MeSH
- hydroponie metody MeSH
- kyselina salicylová metabolismus MeSH
- listy rostlin cytologie účinky léků metabolismus MeSH
- meristém cytologie účinky léků metabolismus MeSH
- multienzymové komplexy genetika metabolismus MeSH
- oxylipiny metabolismus MeSH
- peroxid vodíku antagonisté a inhibitory farmakologie MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné buňky účinky léků metabolismus MeSH
- semena rostlinná účinky léků MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- sulfonamidy chemická syntéza farmakologie MeSH
- transkriptom MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AIM1 protein, Arabidopsis MeSH Prohlížeč
- CAT2 protein, Arabidopsis MeSH Prohlížeč
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- multienzymové komplexy MeSH
- oxylipiny MeSH
- peroxid vodíku MeSH
- proteiny huseníčku MeSH
- sulfonamidy MeSH
Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense.
- Klíčová slova
- NPR1, PIN, PP2A, auxin, auxin transport, gravitropism, immunity, phosphorylation, protein phosphatase 2A, salicylic acid,
- MeSH
- Arabidopsis růst a vývoj fyziologie MeSH
- imunita rostlin MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- proteinfosfatasa 2 metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- PIN2 protein, Arabidopsis MeSH Prohlížeč
- PP2A protein, Arabidopsis MeSH Prohlížeč
- proteinfosfatasa 2 MeSH
- proteiny huseníčku MeSH