Dermal fibroblast Dotaz Zobrazit nápovědu
BACKGROUND: The purpose of dermal substitutes is to mimic the basic properties of the extracellular matrix of human skin. The application of dermal substitutes to the defect reduces the formation of hypertrophic scars and improves the scar quality. This study aims to develop an original dermal substitute enriched with stable fibroblast growth factor 2 (FGF2-STAB®) and test it in an animal model. METHODS: Dermal substitutes based on collagen/chitosan scaffolds or collagen/chitosan scaffolds with nanofibrous layer were prepared and enriched with FGF2-STAB® at concentrations of 0, 0.1, 1.0, and 10.0 µg ‧ cm-2. The performance of these dermal substitutes was tested in vivo on artificially formed skin defects in female swine. The outcomes were evaluated using cutometry at 3 and 6 months. In addition, visual appearance was assessed based on photos of the scars at 1-month, 3-month and 6-month follow-ups using Yeong scale and Visual Analog Scale. RESULTS: The dermal substitute was fully integrated into all defects and all wounds healed successfully. FGF2-STAB®-enriched matrices yielded better results in cutometry compared to scaffolds without FGF2. Visual evaluation at 1, 3, and 6 months follow-ups detected no significant differences among groups. The FGF2-STAB® effectiveness in improving the elasticity of scar tissues was confirmed in the swine model. This effect was independently observed in the scaffolds with nanofibres as well as in the scaffolds without nanofibres. CONCLUSION: The formation of scars with the best elasticity was exhibited by addition 1.0 µg ‧ cm-2of FGF2-STAB® into the scaffolds, although it had no significant effect on visual appearance at longer follow-ups. This study creates the basis for further translational studies of the developed product and its progression into the clinical phase of the research.
- Klíčová slova
- Animal experiment, Cutometry, Dermal substitute, Fibroblast grow factor 2, Scar, Visual assessment,
- MeSH
- chitosan * MeSH
- fibroblastový růstový faktor 2 * MeSH
- hojení ran účinky léků MeSH
- jizva hypertrofická MeSH
- kolagen MeSH
- kůže MeSH
- modely nemocí na zvířatech MeSH
- nanovlákna terapeutické užití MeSH
- popálení MeSH
- prasata MeSH
- pružnost * MeSH
- tkáňové podpůrné struktury MeSH
- umělá kůže * MeSH
- viskozita MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitosan * MeSH
- fibroblastový růstový faktor 2 * MeSH
- kolagen MeSH
BACKGROUND: Our study focuses on the fabrication of appropriate scaffolds for skin wound healing. This research brings valuable insights into the molecular mechanisms of adhesion, proliferation, and control of cell behavior through the extracellular matrix represented by synthetic biodegradable nanofibrous membranes coated by biomolecules. METHODS: Nanofibrous polylactic acid (PLA) membranes were prepared by a needle-less electrospinning technology. These membranes were coated with fibrin according to two preparation protocols, and additionally they were coated with fibronectin in order to increase the cell affinity for colonizing the PLA membranes. The adhesion, growth, and extracellular matrix protein production of neonatal human dermal fibroblasts were evaluated on the nanofibrous membranes. RESULTS: Our results showed that fibrin-coated membranes improved the adhesion and proliferation of human dermal fibroblasts. The morphology of the fibrin nanocoating seems to be crucial for the adhesion of fibroblasts, and consequently for their phenotypic maturation. Fibrin either covered the individual fibers in the membrane (F1 nanocoating), or covered the individual fibers and also formed a fine homogeneous nanofibrous mesh on the surface of the membrane (F2 nanocoating), depending on the mode of fibrin preparation. The fibroblasts on the membranes with the F1 nanocoating remained in their typical spindle-like shape. However, the cells on the F2 nanocoating were spread mostly in a polygon-like shape, and their proliferation was significantly higher. Fibronectin formed an additional mesh attached to the surface of the fibrin mesh, and further enhanced the cell adhesion and growth. The relative gene expression and protein production of collagen I and fibronectin were higher on the F2 nanocoating than on the F1 nanocoating. CONCLUSION: A PLA membrane coated with a homogeneous fibrin mesh seems to be promising for the construction of temporary full-thickness skin tissue substitutes.
- Klíčová slova
- dermal fibroblasts, extracellular matrix synthesis, fibrin, nanocoating, nanofibers, polylactic acid, skin substitute,
- MeSH
- buněčná adheze fyziologie MeSH
- buněčné kultury přístrojové vybavení metody MeSH
- extracelulární matrix metabolismus MeSH
- fibrin chemie farmakologie MeSH
- fibroblasty cytologie účinky léků MeSH
- fibronektiny metabolismus MeSH
- kolagen typu I metabolismus MeSH
- kultivované buňky MeSH
- kůže cytologie MeSH
- lidé MeSH
- membrány umělé MeSH
- nanostruktury chemie MeSH
- nanotechnologie metody MeSH
- polyestery chemie MeSH
- proliferace buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibrin MeSH
- fibronektiny MeSH
- kolagen typu I MeSH
- membrány umělé MeSH
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
Dermal fibroblasts, which make up the major cell type in the dermis, have, historically, been considered to be relatively 'passive' cells which are responsible for the synthesis and remodeling of extracellular matrix proteins. However, the dermal fibroblast population is composed of heterogeneous and distinct cell types, and it has been established that, under the stress conditions of healing wound environments, dermal fibroblasts participate in the regulation of ongoing inflammation and cell proliferation by secreting a variety of signaling molecules that modulate the functions of immune cells, keratinocyte, endothelial cells and mast cells via both direct cell to cell communication and autocrine and paracrine interactions. This review describes the capacity of dermal fibroblasts to sense and respond to signals from the micro-environment and to communicate with surrounding cells during cutaneous wound healing. The review further emphasizes the, to date, poorly understood roles of heterogeneous dermal fibroblast populations in the wound healing process.
- Klíčová slova
- Dermal fibroblast, Intercellular communication, Papillary, Reticular, Wound healing,
- MeSH
- endoteliální buňky fyziologie MeSH
- extracelulární matrix - proteiny fyziologie MeSH
- fibroblasty fyziologie MeSH
- hojení ran * MeSH
- keratinocyty fyziologie MeSH
- lidé MeSH
- mezibuněčná komunikace * MeSH
- proliferace buněk MeSH
- signální transdukce MeSH
- škára cytologie MeSH
- zánět imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts. Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.
- Klíčová slova
- Epidermal differentiation, Keratinocyte-fibroblast crosstalk, Skin equivalents, Skin homeostasis,
- MeSH
- buněčná diferenciace MeSH
- epidermální buňky metabolismus patologie MeSH
- epidermis metabolismus MeSH
- fibroblasty metabolismus MeSH
- homeostáza genetika fyziologie MeSH
- keratinocyty metabolismus patologie MeSH
- kožní absorpce MeSH
- kůže metabolismus patologie MeSH
- lidé MeSH
- permeabilita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biomedical application of silver nanoparticles (AgNPs) has been rapidly increasing. Owing to their strong antimicrobial activity, AgNPs are used in dermatology in the treatment of wounds and burns. However, recent evidence for their cytotoxicity gives rise to safety concerns. This study was undertaken as a part of an ongoing programme in our laboratory to develop a topical agent for wound healing. Here, we investigated the potential toxicity of AgNPs using normal human dermal fibroblasts (NHDF) and normal human epidermal keratinocytes (NHEK) with the aim of comparing the effects of AgNPs and ionic silver (Ag-I). Besides the effect of AgNPs and Ag-I on cell viability, the inflammatory response and DNA damage in AgNPs and Ag-I-treated cells were examined. The results showed that Ag-I were significantly more toxic than AgNPs both on NHDF and NHEK. Non-cytotoxic concentrations of AgNPs and Ag-I did not induce DNA strand breaks and did not affect inflammatory markers, except for a transient increase in interleukin 6 levels in Ag-I-treated NHDF. The results showed that AgNPs are more suitable for the intended application as a topical agent for wound healing up to the concentration 25 µg/mL.
- Klíčová slova
- DNA damage, Human dermal fibroblasts, human epidermal keratinocytes, inflammation, silver nanoparticles, toxicity,
- MeSH
- antiinfekční látky chemie toxicita MeSH
- buněčné kultury MeSH
- epidermis účinky léků patologie MeSH
- fibroblasty účinky léků patologie MeSH
- keratinocyty účinky léků patologie MeSH
- kovové nanočástice chemie toxicita MeSH
- kultivované buňky MeSH
- kůže účinky léků patologie MeSH
- lidé MeSH
- poškození DNA MeSH
- povrchové vlastnosti MeSH
- stříbro chemie toxicita MeSH
- transmisní elektronová mikroskopie MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- stříbro MeSH
Bacterial nanocellulose has found applications in tissue engineering, in skin tissue repair, and in wound healing. Its large surface area enables the adsorption of various substances. Bacterial nanocellulose with adsorbed substances can serve as a substrate for drug-delivery of specific bioactive healing agents into wounds. In this study, we loaded a bacterial nanocellulose hydrogel with curcumin, i.e., an important anti-bacterial and healing agent, and its degradation products. These products were prepared by thermal decomposition of curcumin (DC) at a temperature of 180 °C (DC 180) or of 300 °C (DC 300). The main thermal decomposition products were tumerone, vanillin, and feruloylmethane. Curcumin and its degradation products were loaded into the bacterial nanocellulose by an autoclaving process. The increased temperature during autoclaving enhanced the solubility and the penetration of the agents into the nanocellulose. The aim of this study was to investigate the cytotoxicity and the antimicrobial activity of pure curcumin, its degradation products, and finally of bacterial nanocellulose loaded with these agents. In vitro tests performed on human dermal fibroblasts revealed that the degradation products of curcumin, i.e., DC 180 and DC 300, were more cytotoxic than pure curcumin. However, if DC 300 was loaded into nanocellulose, the cytotoxic effect was not as strong as in the case of DC 300 powder added into the culture medium. DC 300 was found to be the least soluble product in water, which probably resulted in the poor loading of this agent into the nanocellulose. Nanocellulose loaded with pure curcumin or DC 180 exhibited more antibacterial activity than pristine nanocellulose.
- Klíčová slova
- bacterial nanocellulose, curcumin, curcumin thermal degradation, dermal fibroblasts,
- Publikační typ
- časopisecké články MeSH
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a mutation in the HTT gene. To generate human-induced pluripotent stem cells (hiPSCs), we used dermal fibroblasts from 1 healthy adult control (K-Pic2), 1 HD manifest patient (M-T2), 1 healthy juvenile control (jK-N1), and 1 juvenile HD patient (jHD-V1). HD stage of patients was assessed by neurological tests and donors were without comorbidities and were non-smokers. Characterization showed that the obtained hiPSCs have the same number of CAG repeats as the parental fibroblast lines, express pluripotency markers and have the ability to differentiate into all 3 germ layers.
Dermal fibroblasts (DF) constitute one of key cells involved in wound healing. However, the functions they perform in wound conditions remain poorly understood. This study involved exposing DF to low nutrition and to low nutrition + LPS for 5 d as conditions representing the wound. Although DF exhibited increasing metabolic activity in time under all conditions including control, the proliferation did not change in both low nutrition and low nutrition + LPS. Only the low nutrition + LPS was found to potentiate the migration and pro-inflammatory phenotype (IL6 release) of DF. The potential of DF to contract collagen hydrogel declined only under low nutrition as a consequence of low cell number. The expression of α-SMA was reduced under both conditions independently of the cell number. The remodeling capability of DF was affected under both conditions as documented by the enhanced MMP2 activity. Finally, the production of collagen type I was not affected by either condition. The study shows that low nutrition as the single factor is able to delay the healing process. Moreover, the addition of the mild pro-inflammatory stimulus represented by LPS may amplify the cell response in case of decreased α-SMA expression or excite DF to produce IL6 impairing the healing process.
- Klíčová slova
- Dermal fibroblasts, Inflammation, Lipopolysaccharide, Low nutrition, Wound healing,
- MeSH
- fibroblasty * MeSH
- hydrogely metabolismus MeSH
- interleukin-6 metabolismus MeSH
- kolagen metabolismus MeSH
- lipopolysacharidy farmakologie MeSH
- matrixová metaloproteinasa 2 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely MeSH
- interleukin-6 MeSH
- kolagen MeSH
- lipopolysacharidy MeSH
- matrixová metaloproteinasa 2 * MeSH
We investigated combined effects of hexavalent chromium and nickel on viability, intracellular signaling and cell death of primary human skin fibroblasts during 24 h of exposure. We show that nickel at non-toxic concentrations prevents hexavalent chromium-induced cell damage and apoptosis, mainly by overexpression of heat shock proteins (HSPs), in particular HSP27 and activation of nuclear factor kappa B (NFkappaB) as demonstrated by specific knockdown of HSPs or NFkappaB. Conversely, cytotoxic nickel concentrations which induce apoptosis in dermal fibroblasts by themselves act to enhance hexavalent chromium effects in the same cells by stimulating oxidative stress and depleting ATP leading to rapid necrosis as demonstrated by markedly increased LDH release in exposed cells. Using specific pharmacological inhibitors it was further demonstrated that oxidative stress and PARP-1 activity are responsible for rapid necrosis. In conclusion, exposure of dermal fibroblasts to high nickel concentrations in combination with hexavalent chromium may result in rapid cell damage leading to necrosis while low nickel concentrations may prevent hexavalent chromium-induced cell death with potential accumulation of damaged but otherwise viable cells.
- MeSH
- apoptóza účinky léků MeSH
- chrom toxicita MeSH
- fibroblasty účinky léků MeSH
- kultivované buňky MeSH
- lékové interakce MeSH
- lidé MeSH
- nikl toxicita MeSH
- škára cytologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chrom MeSH
- chromium hexavalent ion MeSH Prohlížeč
- nikl MeSH
MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs.
- Klíčová slova
- Induced pluripotent stem cells, KLF4, Mesenchymal-to-epithelial transition, OCT4, Reprogramming, SOX2, c-MYC, miR-145, microRNA,
- MeSH
- fibroblasty cytologie metabolismus MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- Krüppel-like faktor 4 MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- přeprogramování buněk * genetika MeSH
- regulace genové exprese MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů MeSH
- škára cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- KLF4 protein, human MeSH Prohlížeč
- Krüppel-like faktor 4 MeSH
- mikro RNA MeSH
- MIRN145 microRNA, human MeSH Prohlížeč