Genotype x environment interaction Dotaz Zobrazit nápovědu
Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover (Trifolium pratense L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.
- Klíčová slova
- genomic prediction, marker x environment interaction, population structure, predictive ability, red clover, trifolium pratense,
- Publikační typ
- časopisecké články MeSH
Previous studies have provided evidence for an association between exposure to high levels of air pollution and increased DNA damage in human sperm. In these studies DNA damage was measured using the sperm chromatin structure assay (SCSA) wherein the percentage of sperm with abnormal chromatin/fragmented DNA is determined and expressed as % DNA fragmentation index (%DFI). Here we extend these observations to address the following hypothesis: men who are homozygous null for glutathione-S-transferase M1 (GSTM1-) are less able to detoxify reactive metabolites of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) found in air pollution. Consequently they are more susceptible to the effects of air pollution on sperm chromatin. Using a longitudinal study design in which men provided semen samples during periods of both low (baseline) and episodically high air pollution, this study revealed a statistically significant association between GSTM1 null genotype and increased SCSA-defined %DFI (beta=0.309; 95% CI: 0.129, 0.489). Furthermore, GSTM1 null men also showed higher %DFI in response to exposure to intermittent air pollution (beta=0.487; 95% CI: 0.243, 0.731). This study thus provides novel evidence for a gene-environment interaction between GSTM1 and air pollution (presumably c-PAHs). The significance of the findings in this study with respect to fertility status is unknown. However, it is biologically plausible that increases in %DFI induced by such exposures could impact the risk of male sub/infertility, especially in men who naturally exhibit high levels of %DFI.
- MeSH
- delece genu MeSH
- dospělí MeSH
- fragmentace DNA MeSH
- genotyp MeSH
- glutathiontransferasa genetika MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- poškození DNA genetika MeSH
- spermie účinky léků metabolismus MeSH
- znečištění ovzduší škodlivé účinky analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- glutathione S-transferase M1 MeSH Prohlížeč
- glutathiontransferasa MeSH
- látky znečišťující vzduch MeSH
Over the 5-year period (2000-2004), a significantly higher beta-glucan content was detected in the waxy varieties Washonubet, Wabet, and Wanubet (6.8-7.6%) and lines formed by crossing these varieties with malting varieties (5.8-7.1%). Conversely, the non-waxy hulled malting-type varieties Kompakt (4.0%) and Krona (4.3%) had significantly lower contents of beta-glucan. The observations also showed that concentrations of beta-glucans in 2000-2004 were significantly affected not only by varieties, but also environmental conditions in the growing periods and interactions of these two factors. Higher precipitation during the flowering time and grain filling period and lower temperatures during the flowering time in 2002 had negative effects on concentration of beta-glucans. Conversely, drier and warmer weather in 2003 enhanced the content of beta-glucans. The results show that it is possible to increase the content of beta-glucan in spring barley grain by implementing selective breeding practices. Compared to the parental malting varieties, the mean content of beta-glucans in F(4)-F(8) generations was increased by 1.8 and 2.0% by recombination in lines Kompakt x Wabet and Wanubet x Krona, respectively. Significant effect of environmental conditions and their interactions with varieties indicated the necessity to assess standard qualities of barley as a food material.
- MeSH
- beta-glukany aplikace a dávkování analýza MeSH
- biopotraviny * MeSH
- déšť MeSH
- geneticky modifikované rostliny * MeSH
- genotyp MeSH
- ječmen (rod) chemie genetika MeSH
- lidé MeSH
- nutriční hodnota MeSH
- potravní vláknina aplikace a dávkování analýza MeSH
- teplota MeSH
- zemědělství metody MeSH
- životní prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-glukany MeSH
- potravní vláknina MeSH
BACKGROUND: Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait). RESULTS: The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79-0.91 and GRR: 0.80-0.91), and were generally similar to the multi-site (RR-BLUP: 0.83-0.91, GRR: 0.83-0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79-0.92, GRR: 0.79-0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79-0.92, GRR: 0.78-0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD. CONCLUSIONS: While GS models' prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.
- Klíčová slova
- Douglas-fir, Exome capture, Full-sib families, Genomic selection, Genotype x environment interaction, Predictive model,
- MeSH
- dřevo chemie genetika MeSH
- exom * MeSH
- genomika MeSH
- genotyp MeSH
- lineární modely MeSH
- lokus kvantitativního znaku MeSH
- modely genetické * MeSH
- Pseudotsuga genetika růst a vývoj MeSH
- selekce (genetika) * MeSH
- šlechtění rostlin * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: This cross-sectional study investigated the relationship between genetic variations in monocarboxylate transporter genes and blood lactate production and removal after high-intensity efforts in humans. The study was conducted to explore how genetic variations in the MCT1, MCT2, and MCT4 genes influenced lactate dynamics and to advance the field of sports genetics by pinpointing critical genetic markers that can enhance athletic performance and recovery. METHODS: 337 male athletes from Poland and the Czech Republic underwent two intermittent all-out Wingate tests. Before the tests, DNA samples were taken from each participant, and SNP (single nucleotide polymorphism) analysis was carried out. Two intermittent all-out tests were implemented, and lactate concentrations were assessed before and after these tests. RESULTS: Sprinters more frequently exhibited the haplotype TAC in the MCT2 gene, which was associated with an increase in the difference between maximum lactate and final lactate concentration. Additionally, this haplotype was linked to higher maximum lactate concentration and was more frequently observed in sprinters. The genotypic interactions AG/T- and GGxT- (MCT1 rs3789592 x MCT4 rs11323780), TTxTT (MCT1 rs12028967 x MCT2 rs3763979), and MCT1 rs7556664 x MCT4 rs11323780 were all associated with an increase in the difference between maximum lactate concentration and final lactate concentration. Conversely, the AGxGG (MCT1 rs3789592 x MCT2 rs995343) interaction was linked to a decrease in this difference. The relationship between maximum lactate concentration and genotypic interactions can be observed as follows: when ATxTT (MCT2 rs3763980 x MCT4 rs11323780) or CTxCT (MCT1 rs10857983 x MCT2 rs3763979) genotypic combinations are present, it leads to a decrease in maximum lactate concentration. Similarly, the combination of CTxCT (MCT1 rs4301628 x MCT2 rs3763979), CT x TT (MCT1 rs4301628 x MCT4 rs11323780), and CTxTT (MCT1 rs4301628 x MCT2 rs3763979) results in decreased maximum lactate concentration. CONCLUSIONS: The TAC haplotype (rs3763980, rs995343, rs3763979) in the MCT2 gene is associated with altered lactate clearance in sprinters, potentially affecting performance and recovery by elevating post-exercise lactate concentrations. While MCT4 rs11323780 is also identified as a significant variant in lactate metabolism, suggesting its role as a biomarker for sprinting performance, further investigation is necessary to clarify underlying mechanisms and consider additional factors. Based on elite male athletes from Poland and the Czech Republic, the study may not generalize to all sprinters or diverse athletic populations. Although genetic variants show promise as biomarkers for sprinting success, athletic performance is influenced by a complex interplay of genetics, environment, and training extending beyond MCT genes.
- Klíčová slova
- Athletic training, Genetic predisposition, Genetic variants, Genotype, Haplotype, Lactate kinetics, Sprint,
- MeSH
- dospělí MeSH
- genotyp MeSH
- haplotypy * MeSH
- jednonukleotidový polymorfismus * MeSH
- kinetika MeSH
- kyselina mléčná * krev metabolismus MeSH
- lidé MeSH
- mladý dospělý MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus MeSH
- průřezové studie MeSH
- sportovci MeSH
- svalové proteiny * genetika metabolismus MeSH
- symportéry * genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná * MeSH
- monocarboxylate transport protein 1 MeSH Prohlížeč
- přenašeče monokarboxylových kyselin * MeSH
- SLC16A2 protein, human MeSH Prohlížeč
- SLC16A4 protein, human MeSH Prohlížeč
- svalové proteiny * MeSH
- symportéry * MeSH
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals' breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.
- Klíčová slova
- Genetic variance decomposition, Interior spruce, Multienvironment, Open-pollinated families, Pedigree- and marker-based relationships,
- Publikační typ
- časopisecké články MeSH
MS is a major atherogenic syndrome in our population. The concept of MS has had a very positive effect on our knowledge of the most serious civilization diseases, the genotypic constellation of MS, although monogenic defects explain only a very small part of pathological defects. It is certain, however, that a crucial role played is by interactions between genetic factors and risk factors of external environment. Undoubtedly, insulin resistance, central obesity and impaired metabolism of adipose tissue play an important role in the pathogenesis of MS, and there are other pathogenetic theories. The author discusses briefly the history of MS and presents the best-known definitions starting with the 90s ofthe last century, ADA and EASD reservations towards MS, as well as the new harmonized definition from 2009. This modified definition ofMS has been adopted in practice in the Czech Republic due to the Czech Institute ofmetabolic syndrome. The author discusses in greater detail the WHO expert report from 2010, which indicates some limitations of diagnostic criteria for MS. Despite all the objections the expert report provides reasons to support the use of the term metabolic syndrome, and metabolic syndrome is considered to be a recognized concept that focuses attention on the importance of comprehensive, multifactorial health problems. Finally, the author mentions sub-problems related to MS, which will have to be resolved in collaboration with diabetologists.
- MeSH
- lidé MeSH
- metabolický syndrom * komplikace diagnóza patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel. We analyzed TE on 537 pearl millet genotypes, including inbred lines, test-cross hybrids, and hybrids bred for different agroecological zones. Three lysimeter trials were conducted in 2012, 2013 and 2015, to assess TE both under well-watered and terminal-water stress conditions. We recorded grain yield to assess its relationship with TE. Up to two-fold variation for TE was observed over the accessions used. Mean TE varied between inbred and testcross hybrids, across years and was slightly higher under water stress. TE also differed among hybrids developed for three agroecological zones, being higher in hybrids bred for the wetter zone, underlining the importance of selecting germplasm according to the target area. Environmental conditions triggered large Genotype x Environment (GxE) interactions, although TE showed some high heritability. Transpiration efficiency was the second contributor to grain yield after harvest index, highlighting the importance of integrating it into pearl millet breeding programs. Future research on TE in pearl millet should focus (i) on investigating the causes of its plasticity i.e. the GxE interaction (ii) on studying its genetic basis and its association with other important physiological traits.
- MeSH
- biomasa MeSH
- genetická variace MeSH
- genotyp * MeSH
- období sucha MeSH
- Pennisetum * genetika fyziologie růst a vývoj MeSH
- šlechtění rostlin metody MeSH
- transpirace rostlin * fyziologie MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Cold exposure of rats leads to ameliorated glucose and triglyceride utilization with females displaying better adaptation to a cold environment. In the current study, we used hairless rats as a model of increased thermogenesis and analyzed gender-related effects on parameters of lipid and glucose metabolism in the spontaneously hypertensive (SHR) rats. Specifically, we compared hairless coisogenic SHR-Dsg4 males and females harboring mutant Dsg4 (desmoglein 4) gene versus their SHR wild type controls. Two way ANOVA showed significant Dsg4 genotype (hairless or wild type) x gender interaction effects on palmitate oxidation in brown adipose tissue (BAT), glucose incorporation into BAT determined by microPET, and glucose oxidation in skeletal muscles. In addition, we observed significant interaction effects on sensitivity of muscle tissue to insulin action when Dsg4 genotype affected these metabolic traits in males, but had little or no effects in females. Both wild type and hairless females and hairless males showed increased glucose incorporation and palmitate oxidation in BAT and higher tissue insulin sensitivity when compared to wild type males. These findings provide evidence for gender-related differences in metabolic adaptation required for increased thermogenesis. They are consistent with the hypothesis that increased glucose and palmitate utilization in BAT and muscle is associated with higher sensitivity of adipose and muscle tissues to insulin action.
- MeSH
- adipozita MeSH
- desmogleiny genetika MeSH
- energetický metabolismus * genetika MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- genotyp MeSH
- glukosa metabolismus MeSH
- hnědá tuková tkáň metabolismus patofyziologie MeSH
- hypertenze genetika metabolismus patofyziologie MeSH
- inzulin metabolismus MeSH
- kosterní svaly metabolismus patofyziologie MeSH
- kyselina palmitová metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- nízká teplota * MeSH
- oxidace-redukce MeSH
- potkani bezsrstí MeSH
- potkani inbrední SHR MeSH
- přijímání potravy MeSH
- regulace genové exprese MeSH
- sexuální faktory MeSH
- termogeneze * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- desmogleiny MeSH
- Dsg4 protein, rat MeSH Prohlížeč
- glukosa MeSH
- inzulin MeSH
- kyselina palmitová MeSH
Red clover (Trifolium pratense L.) is an outcrossing forage legume that has adapted to a wide range of climatic and growing conditions across Europe. Red clover is valued for its high yield potential and its forage quality. The high amount of genetic diversity present in red clover provides an invaluable, but often poorly characterized resource to improve key traits such as yield, quality, and resistance to biotic and abiotic stresses. In this study, we examined the genetic and phenotypic diversity within a diverse set of 395 diploid red clover accessions via genome wide allele frequency fingerprinting and multi-location field trials across Europe. We found that the genetic structure of accessions mostly reflected their geographic origin and only few cases were detected, where breeders integrated foreign genetic resources into their local breeding pools. The mean dry matter yield of the first main harvesting season ranged from 0.74 kg m-2 in Serbia and Norway to 1.34 kg m-2 in Switzerland. Phenotypic performance of accessions in the multi-location field trials revealed a very strong accession x location interaction. Local adaptation was especially prominent in Nordic red clover accessions that showed a distinct adaptation to the growing conditions and cutting regime of the North. The traits vigor, dry matter yield and plant density were negatively correlated between the trial location in Norway and the locations Great Britain, Switzerland, Czech Republic and Serbia. Notably, breeding material and cultivars generally performed well at the location where they were developed. Our results confirmed that red clover cultivars were bred from regional ecotypes and show a narrow adaptation to regional conditions. Our study can serve as a valuable basis for identifying interesting materials that express the desired characteristics and contribute to the adaptation of red clover to future climatic conditions.
- Klíčová slova
- adaptation, forage, legume, plant breeding, red clover,
- Publikační typ
- časopisecké články MeSH