S-nitrosation Dotaz Zobrazit nápovědu
Nejvíce citovaný článek - PubMed ID 23274177
Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
- Klíčová slova
- S-(hydroxymethyl)glutathione, S-nitrosation, S-nitrosoglutathione reductase, S-nitrosothiols, nitric oxide,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
- Klíčová slova
- S-nitrosation, denitrosation, nitric oxide, plant redox signaling, reactive nitrogen species, thioredoxin, thioredoxin reductase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
- Klíčová slova
- S-nitrosation, S-nitrosoglutathione reductase, Solanum habrochaites, Solanum lycopersicum, abiotic stress, cadmium, nitric oxide, reactive oxygen species, root growth, salinity,
- MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- askorbátperoxidasa metabolismus MeSH
- benzamidy chemie metabolismus farmakologie MeSH
- chlorid sodný farmakologie MeSH
- fyziologický stres MeSH
- kadmium toxicita MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- NADPH-oxidasy metabolismus MeSH
- nitrosace MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- pyrroly chemie metabolismus farmakologie MeSH
- reaktivní formy dusíku chemie metabolismus MeSH
- reaktivní formy kyslíku chemie metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny metabolismus MeSH
- S-nitrosoglutathion farmakologie MeSH
- S-nitrosothioly metabolismus MeSH
- Solanum lycopersicum účinky léků růst a vývoj metabolismus MeSH
- Solanum růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- askorbátperoxidasa MeSH
- benzamidy MeSH
- chlorid sodný MeSH
- formaldehyde dehydrogenase, glutathione-independent MeSH Prohlížeč
- kadmium MeSH
- N6022 MeSH Prohlížeč
- NADPH-oxidasy MeSH
- oxid dusnatý MeSH
- peroxid vodíku MeSH
- pyrroly MeSH
- reaktivní formy dusíku MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
- S-nitrosoglutathion MeSH
- S-nitrosothioly MeSH
Regulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica. S-nitrosoglutathione reductase activity and protein level were decreased by P. infestans and P. parasitica infection in both genotypes, whereas protein S-nitrosothiols were increased by P. infestans infection, particularly at 72 hpi related to pathogen biotrophy-necrotrophy transition. Increased levels of S-nitrosothiols localised in both proximal and distal parts to the infection site, which suggests together with their localisation to vascular bundles a signalling role in systemic responses. S-nitrosation targets in plants infected with P. infestans identified by a proteomic analysis include namely antioxidant and defence proteins, together with important proteins of metabolic, regulatory and structural functions. Ascorbate peroxidase S-nitrosation was observed in both genotypes in parallel to increased enzyme activity and protein level during P. infestans pathogenesis, namely in the susceptible genotype. These results show important regulatory functions of protein S-nitrosation in concerting molecular mechanisms of plant resistance to hemibiotrophic pathogens.
- Publikační typ
- časopisecké články MeSH