SNP arrays Dotaz Zobrazit nápovědu
OBJECTIVES: SNP array (array method using Single Nucleotide Polymorphisms) enables to detect cytogenetically undetectable submicroscopic alterations (microdeletions, microduplications), which could be also causative for ultrasonographic anomalies of fetus. This article describes the principle, advantages, disadvantages and application possibilities of the SNP array method in prenatal diagnosis. The ten month experience with SNP array use in prenatal diagnosis is presented. DESIGN: Prospective study. SETTINGS: Gennet, Prague. MATERIAL AND METHODS: During the period from April 2010 to January 2011 we performed 110 SNP array analyses of fetal DNA: 14 chorionic villi samples (CVS), 88 amniotic fluid samples (AMC), 1 cord blood sample and 7 miscarriage samples. Laboratory tests were carried out on DNA from both cultured and uncultured fetal cells. Examinations were performed in fetuses with sonographic abnormal findings having normal karyotype. In addition 14 fetal cytogenetic abnormalities were solved. SNP array analysis was performed using Illumina InfiniumHD HumanCytoSNP-12 chip. All data were analysed by Illumina KaryoStudio and GenomeStudio software. RESULTS: SNP array analysis was performed in 108 fetuses (only 2 examination failures, 1.8%). In total, we detected CNV (copy number variation) in 29 samples (29/108 = 27%). 15% (16/108) of fetuses with abnormal ultrasound findings were found to carry clinically relevant CNV. Probably benign CNVs were found in 8 samples (8/108 = 7%) and in additional 5 CNVs parental samples have not been analysed yet. Excluding karyotypically abnormal cases clinically relevant CNVs were found in 10% of fetuses (9/94). In all cases with de novo chromosomal aberration the clinical relevancy was clarified (imbalances in 50%). CONCLUSION: Our data suggest that SNP array analysis is a relevant and useful technique in prenatal diagnosis.
- MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- prenatální diagnóza * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů * MeSH
- těhotenství MeSH
- ultrasonografie prenatální MeSH
- vrozené vady diagnóza diagnostické zobrazování genetika MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
New molecular biology methods have specified the evidence of chromosomal changes in the tumor tissue. These alterations can be proven to exist in the majority of malignant tumors. The fast progress of whole genome molecular biological methods has helped to improve the knowledge of tumor genetics. The evidence of genetic changes is a component of currently used diagnostic and prognostic schemes in particular cancer diseases. Karyotyping was the first method used in the clinical practice but its importance has decreased with the arrival of new molecular biological methods. The most common methods used for the detection of chromosomal deletions or amplifications are CGH, array-CGH and SNP array. The first two methods are based on the principle of comparison between tumor DNA and control DNA. The principle of SNP array uses the presence of single nucleotide polymorphisms that are located in the whole genome in each individual. SNP array can prove not only deletions or amplifications of the chromosomes but unlike CGH techniques it can also detect a loss of heterozygosity or uniparental disomy. The screening of chromosomal changes has nowadays become routine. These techniques are used for diagnosis, prognosis and treatment of cancer disease in certain cases.
- MeSH
- chromozomální aberace MeSH
- DNA nádorová analýza genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádory diagnóza genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- srovnávací genomová hybridizace metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA nádorová MeSH
Myelodysplastic syndrome (MDS), a clonal disorder originating from hematopoietic stem cell, is characterized by a progressive character often leading to transformation to acute myeloid leukemia. We used single nucleotide polymorphism arrays (SNP-A) to identify previously cryptic chromosomal abnormalities such as copy number alterations and uniparental disomies (UPD) in cytogenetically normal MDS. In the aberrant regions, we attempted to localize candidate genes with potential relevance to the disease. Using SNP-A, we analyzed peripheral blood granulocytes from 37 MDS patients. The analysis identified 13 cryptic chromosomal defects in 10 patients (27%). Four UPD (affecting chromosomes 3q, 7q, 17q, and 20p), 5 deletions and 4 duplications were detected. Gene expression data measured on CD34+ cells were available for 4 patients with and 6 patients without SNP-A lesions. We performed an integrative analysis of genotyping and gene expression microarrays and found several genes with an altered expression located in the aberrant regions. The expression microarrays suggested BMP2 and TRIB3 located in 20p UPD as potential candidate genes contributing to MDS. We showed that the genome-wide integrative approach is beneficial to the comprehension of molecular backgrounds of diseases with incompletely understood etiopathology.
- MeSH
- analýza přežití MeSH
- chromozomální aberace * MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus * MeSH
- karyotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- myelodysplastické syndromy genetika mortalita MeSH
- následné studie MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stanovení celkové genové exprese * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples. RESULTS: The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies. Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses. CONCLUSIONS: Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable. Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses.
- MeSH
- analýza hlavních komponent MeSH
- dospělí MeSH
- etnicita genetika MeSH
- fenotyp MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- populační genetika * MeSH
- populační skupiny genetika MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika etnologie MeSH
- Německo MeSH
- Polsko etnologie MeSH
Walker-Warburg syndrome (WWS) is a rare form of autosomal recessive, congenital muscular dystrophy that is associated with brain and eye anomalies. Several genes encoding proteins involved in abnormal α-dystroglycan glycosylation have been implicated in the aetiology of WWS, most recently the ISPD gene. Typical WWS brain anomalies, such as cobblestone lissencephaly, hydrocephalus and cerebellar malformations, can be prenatally detected through routine ultrasound examinations. Here, we report two karyotypically normal foetuses with multiple brain anomalies that corresponded to WWS symptoms. Using a SNP-array examination on the amniotic fluid DNA, a homozygous microdeletion was identified at 7p21.2p21.1 within the ISPD gene. Published data and our findings led us to the conclusion that a homozygous segmental intragenic deletion of the ISPD gene causes the most severe phenotype of Walker-Warburg syndrome. Our results also clearly supports the use of chromosomal microarray analysis as a first-line diagnostic test in patients with a foetus with one or more major structural abnormalities identified on ultrasonographic examination.
- Klíčová slova
- 7p21 microdeletion, Brain anomalies, ISPD gene, SNP array, Walker–Warburg syndrome,
- MeSH
- delece genu * MeSH
- exprese genu MeSH
- homozygot MeSH
- karyotyp MeSH
- lidé MeSH
- lidské chromozomy, pár 7 MeSH
- mozek metabolismus patologie MeSH
- nukleotidyltransferasy nedostatek genetika MeSH
- plod MeSH
- potrat eugenický MeSH
- rodina MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- syndrom Walker-Walburgové diagnóza diagnostické zobrazování genetika patologie MeSH
- ultrasonografie prenatální MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- CRPPA protein, human MeSH Prohlížeč
- nukleotidyltransferasy MeSH
Single nucleotide polymorphism (SNP) arrays, also named « SNP chips », enable very large numbers of individuals to be genotyped at a targeted set of thousands of genome-wide identified markers. We used preexisting variant datasets from USDA, a French commercial line and 30X-coverage whole genome sequencing of INRAE isogenic lines to develop an Affymetrix 665 K SNP array (HD chip) for rainbow trout. In total, we identified 32,372,492 SNPs that were polymorphic in the USDA or INRAE databases. A subset of identified SNPs were selected for inclusion on the chip, prioritizing SNPs whose flanking sequence uniquely aligned to the Swanson reference genome, with homogenous repartition over the genome and the highest Minimum Allele Frequency in both USDA and French databases. Of the 664,531 SNPs which passed the Affymetrix quality filters and were manufactured on the HD chip, 65.3% and 60.9% passed filtering metrics and were polymorphic in two other distinct French commercial populations in which, respectively, 288 and 175 sampled fish were genotyped. Only 576,118 SNPs mapped uniquely on both Swanson and Arlee reference genomes, and 12,071 SNPs did not map at all on the Arlee reference genome. Among those 576,118 SNPs, 38,948 SNPs were kept from the commercially available medium-density 57 K SNP chip. We demonstrate the utility of the HD chip by describing the high rates of linkage disequilibrium at 2-10 kb in the rainbow trout genome in comparison to the linkage disequilibrium observed at 50-100 kb which are usual distances between markers of the medium-density chip.
- Klíčová slova
- SNP, doubled haploid lines, high-density chip, isogenic lines, linkage disequilibrium, rainbow trout, sequence, single nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
Alterations in the genome that lead to changes in DNA sequence copy number are characteristic features of solid tumors. We used CGH+SNP microarray and HPV-FISH techniques for detailed screening of copy number alterations (CNAs) in a cohort of 26 patients with cervical carcinoma (CC). This approach identified CNAs in 96.2% (25/26) of tumors. Array-CGH discovered CNAs in 73.1% (19/26) of samples, HPV-FISH experiments revealed CNAs in additional 23.1% (6/26) of samples. Common gains of genetic sequences were observed in 3q (50.0%), 1q (42.4%), 19q (23.1%), while losses were frequently found in 11q (30.8%), 4q (23.1%) and 13q (19.2%). Chromosomal regions involved in loss of heterozygosity were observed in 15.4% of samples in 8q21, 11q23, 14q21 and 18q12.2. Incidence of gain 3q was associated with HPV 16 and HPV 18 positive samples and simultaneous presence of gain 1q (P = 0.033). We did not found a correlation between incidence of CNAs identified by array-CGH and HPV strain infection and incidence of lymph node metastases. Subsequently, HPV-FISH was used for validation of array-CGH results in 23 patients for incidence of hTERC (3q26) and MYC (8q24) amplification. Using HPV-FISH, we found chromosomal lesions of hTERC in 87.0% and MYC in 65.2% of specimens. Our findings confirmed the important role of HPV infection and specific genomic alterations in the development of invasive cervical cancer. This study also indicates that CGH+SNP microarrays allow detecting genome-wide CNAs and copy-neutral loss of heterozygosity more precisely, however, it may be less sensitive than FISH in samples with low level clonal CNAs.
- Klíčová slova
- CGH+SNP microarrays, Cervical carcinoma, HPV-FISH, copy number alterations, whole-genome profiling,
- MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- infekce papilomavirem komplikace genetika MeSH
- karcinom genetika virologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory děložního čípku genetika virologie MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- srovnávací genomová hybridizace metody MeSH
- stanovení celkové genové exprese metody MeSH
- variabilita počtu kopií segmentů DNA MeSH
- ztráta heterozygozity genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Jacobsen syndrome (JBS) is a rare chromosomal disorder caused by terminal deletion of the long arm of chromosome 11. We report on four prenatally diagnosed patients with JBS with variable prenatal and postnatal phenotypes and 11q deletions of varying sizes. Precise characterization of the deleted region in three patients was performed by SNP arrays. The severity of both the prenatal and postnatal phenotypes did not correlate with the size of the haploinsufficient region. Despite the large difference in the deletion size (nearly 6 Mb), both of the live-born patients had similar phenotypes corresponding to JBS. However, one of the most prominent features of JBS, thrombocytopenia, was only present in the live-born boy. The girl, who had a significantly longer deletion spanning all four genes suspected of being causative of JBS-related thrombocytopenia (FLI1, ETS1, NFRKB, and JAM3), did not manifest a platelet phenotype. Therefore, our findings do not support the traditional view of deletion size correlation in JBS or the causative role of FLI1, ETS1, NFRKB, and JAM3 deletion per se for the development of disease-related thrombocytopenia.
- MeSH
- chromozomální delece * MeSH
- dospělí MeSH
- fenotyp MeSH
- genetické asociační studie MeSH
- Jacobsenův syndrom genetika patofyziologie MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 11 genetika MeSH
- mladý dospělý MeSH
- protoonkogenní protein c-fli-1 genetika MeSH
- trombocytopenie genetika MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- FLI1 protein, human MeSH Prohlížeč
- protoonkogenní protein c-fli-1 MeSH
Leaf rust, caused by Puccinia triticina, threatens global wheat production due to the constant evolution of virulent pathotypes that defeat commercially deployed all stage-resistance (ASR) genes in modern cultivars. Hence, the deployment of combinations of adult plant resistance (APR) and ASR genes in new wheat cultivars is desirable. Adult plant resistance gene Lr49 was previously mapped on the long arm of chromosome 4B of cultivar VL404 and flanked by microsatellite markers barc163 (8.1 cM) and wmc349 (10.1 cM), neither of which was sufficiently closely linked for efficient marker assisted selection. This study used high-density SNP genotyping and flow sorted chromosome sequencing to fine-map the Lr49 locus as a starting point to develop a diagnostic marker for use in breeding and to clone this gene. Marker sunKASP_21 was mapped 0.4 cM proximal to Lr49, whereas a group of markers including sunKASP_24 were placed 0.6 cM distal to this gene. Testing of the linked markers on 75 Australian and 90 European cultivars with diverse genetic backgrounds showed that sunKASP_21 was most strongly associated with Lr49. Our results also show that the Lr49 genomic region contains structural variation relative to the reference stock Chinese Spring, possibly an inverted genomic duplication, which introduces a new set of challenges for the Lr49 cloning.
- Klíčová slova
- Infinium iSelect 90K SNP array, adult plant resistance, chromosome sorting, leaf rust, marker assisted breeding,
- Publikační typ
- časopisecké články MeSH
Myanmar is well known as a primary center of plant genetic resources for rice. A considerable number of genetic diversity studies have been conducted in Myanmar using various DNA markers. However, this is the first report using DArTseq technology for exploring the genetic diversity of Myanmar rice. In our study, two ultra-high-throughput diversity array technology markers were employed to investigate the genetic diversity and population structure of local rice varieties in the Ayeyarwady delta, the major region of rice cultivation. The study was performed using 117 rice genotypes with 7643 SNP and 4064 silicoDArT markers derived from the DArT platform. Genetic variance among the genotypes ranged from 0 to 0.753 in SNPs, and from 0.001 to 0.954 in silicoDArT. Two distinct population groups were identified from SNP data analysis. Cluster analysis with both markers clearly separated traditional Pawsan varieties and modern high-yielding varieties. A significant divergence was found between populations according to the Fst values (0.737) obtained from the analysis of molecular variance, which revealed 74% genetic variation at the population level. These findings support rice researchers in identifying useful DNA polymorphisms in genes and pinpointing specific genes conferring desirable phenotypic traits for further genome-wide association studies and parental selection for recombination breeding to enhance rice varietal development and release.
- Klíčová slova
- DArT markers, Myanmar, SNP, genetic diversity, rice (Oryza sativa L.), silicoDArT,
- Publikační typ
- časopisecké články MeSH