abiotic factors
Dotaz
Zobrazit nápovědu
The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol(-1) was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes.
- Klíčová slova
- Abiotic hydrolysis, Biodegradation, Polylactic acid,
- MeSH
- Bacteria metabolismus MeSH
- biodegradace MeSH
- biopolymery chemie MeSH
- časové faktory MeSH
- hydrolýza MeSH
- kyselina mléčná chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopolymery MeSH
- kyselina mléčná MeSH
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
- Klíčová slova
- Abiotic stress, Nutrients signaling, Small peptides,
- MeSH
- fyziologická adaptace MeSH
- fyziologický stres MeSH
- proteiny - lokalizační signály * MeSH
- rostliny * MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny - lokalizační signály * MeSH
Fine flavor cocoa is a unique category of cocoa that produces almonds with high aromatic potential and several sensory benefits that make it different from the basic or ordinary cocoas. Ecuador is the world's leader in the production and export of fine flavor cocoa, responsible for 63% of the world's total production due to the commercialization of the Arriba Nacional variety, known to possess an intense aroma that is unique in the cocoa world market. Besides its organoleptic specificity, this variety represents a source of important bioactive compounds associated with both sensory and health properties. This study evaluates the influence of an abiotic factor, nutritional soil status, on the phytochemical composition (methylxantines and phenolic compounds), and antioxidant and sensory properties of Arriba variety cocoa beans originating from three different geographical regions of Ecuador. We used the Diagnosis and Recommendation Integrated System (DRIS), Folin-Ciocalteau, high-performance liquid chromatography (HPLC), ABTS free-radical-scavenging activity, the α, α-diphenyl-β-picrylhydrazyl free-radical-scavenging method (DPPH), and Ferric reducing antioxidant power (FRAP) analysis to reveal a significant correlation between Mn ions and total phenolic content, a positive implication of N in methylxanthine composition and antioxidant properties, and the importance of Ca, Mg, and K ions in increasing the flavonoid and anthocyanin content of raw cocoa beans. We showed that these nutritional elements can interfere with the nutraceutical and sensory properties of cocoa beans, as Cu, Mg, and K are correlated with anthocyaninic content, while Fe, Ca, P and Zn influenced the flavonoid content. We underline that the Arriba variety is suitable not only for the production of high-quality chocolate, but also for the increasing worldwide nutraceutical market, generating qualitative and competitive products.
- Klíčová slova
- Arriba Nacional, abiotic factors, antioxidant activity, cocoa, fine flavor, soil nutrients,
- Publikační typ
- časopisecké články MeSH
Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.
- Klíčová slova
- Abiotic stress, Arabidopsis, DNase-seq, FAIRE-seq, chromatin landscape, open chromatin, transcription,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- chromatin MeSH
- fyziologický stres MeSH
- geneticky modifikované rostliny metabolismus MeSH
- období sucha MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- proteiny huseníčku * MeSH
Biofilms are highly resistant to antimicrobials and are a common problem in many industries, including pharmaceutical, food and beverage. Yeast biofilms can be formed by various yeast species, including Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. Yeast biofilm formation is a complex process that involves several stages, including reversible adhesion, followed by irreversible adhesion, colonization, exopolysaccharide matrix formation, maturation and dispersion. Intercellular communication in yeast biofilms (quorum-sensing mechanism), environmental factors (pH, temperature, composition of the culture medium), and physicochemical factors (hydrophobicity, Lifshitz-van der Waals and Lewis acid-base properties, and electrostatic interactions) are essential to the adhesion process. Studies on the adhesion of yeast to abiotic surfaces such as stainless steel, wood, plastic polymers, and glass are still scarce, representing a gap in the field. The biofilm control formation can be a challenging task for food industry. However, some strategies can help to reduce biofilm formation, such as good hygiene practices, including regular cleaning and disinfection of surfaces. The use of antimicrobials and alternative methods to remove the yeast biofilms may also be helpful to ensure food safety. Furthermore, physical control measures such as biosensors and advanced identification techniques are promising for yeast biofilms control. However, there is a gap in understanding why some yeast strains are more tolerant or resistant to sanitization methods. A better understanding of tolerance and resistance mechanisms can help researchers and industry professionals to develop more effective and targeted sanitization strategies to prevent bacterial contamination and ensure product quality. This review aimed to identify the most important information about yeast biofilms in the food industry, followed by the removal of these biofilms by antimicrobial agents. In addition, the review summarizes the alternative sanitizing methods and future perspectives for controlling yeast biofilm formation by biosensors.
- Klíčová slova
- Adhesion, Biofilm, Deterioration, Food hygiene, Yeast,
- MeSH
- bakteriální adheze * MeSH
- biofilmy MeSH
- potravinářská mikrobiologie MeSH
- průmysl zpracování potravin MeSH
- Saccharomyces cerevisiae * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants face several challenges during their growth and development, including environmental factors (mainly abiotic ones), that can lead to/induce oxidative stress-specifically, adverse temperatures (both hot and cold), drought, salinity, radiation, nutrient deficiency (or excess), toxic metals, waterlogging, air pollution, and mechanical stimuli [...].
- MeSH
- fyziologický stres * MeSH
- fyziologie rostlin MeSH
- období sucha MeSH
- oxidační stres MeSH
- rostliny * metabolismus MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.
- Klíčová slova
- abiotic stresses, multiple stress, protein functions, protein markers, proteomics, stress tolerance, temperate crops,
- MeSH
- biologická adaptace * genetika MeSH
- biologické markery MeSH
- fyziologický stres * genetika MeSH
- genotyp MeSH
- proteom * MeSH
- proteomika * metody MeSH
- rostlinné proteiny genetika metabolismus MeSH
- zemědělské plodiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- proteom * MeSH
- rostlinné proteiny MeSH
Due to the increased prevalence of human infections with bird schistosome larvae (cercarial dermatitis) associated with bathing in Danish lakes, a nationwide survey of infected intermediate host snails was conducted in 2018-2020. Pulmonate snails (10,225 specimens) were collected from 39 freshwater lakes (in the four major geographic regions in Denmark) and subjected to shedding. Released schistosome cercariae were isolated and identified by polymerase chain reaction and sequencing whereby Trichobilharzia regenti, Trichobilharzia franki, Trichobilharzia szidati and Trichobilharzia anseri were recorded. Infections were primarily determined by biotic factors such as the presence of final host birds and intermediate host snails and water temperature was noted as an important abiotic parameter associated with the infection. No clear connection with other abiotic factors (conductivity, alkalinity, pH, nitrogen, phosphorous) was seen. The widespread occurrence of infected snails, when compared to previous investigations, suggests that climate changes at northern latitudes could be responsible for the increased risk of contracting cercarial dermatitis.
- Klíčová slova
- Trichobilharzia, avian schistosomes, cercarial dermatitis, pulmonate snails, swimmer's itch,
- MeSH
- hlemýždi parazitologie MeSH
- jezera MeSH
- nemoci ptáků parazitologie MeSH
- ptáci parazitologie MeSH
- Schistosomatidae * izolace a purifikace MeSH
- schistosomóza * veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Dánsko MeSH
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
- Klíčová slova
- functional studies, multiple stress treatments, protein isoforms and PTMs, stress dynamics, stress-susceptible genotypes, stress-tolerant genotypes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.
- MeSH
- aktivace transkripce MeSH
- Arabidopsis klasifikace růst a vývoj metabolismus MeSH
- fylogeneze MeSH
- fyziologický stres * MeSH
- kyselina abscisová farmakologie MeSH
- nízká teplota MeSH
- období sucha MeSH
- promotorové oblasti (genetika) MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- retardační test MeSH
- signální transdukce účinky léků MeSH
- soli chemie farmakologie MeSH
- stres endoplazmatického retikula účinky léků MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- tunikamycin toxicita MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina abscisová MeSH
- proteiny huseníčku MeSH
- soli MeSH
- transkripční faktory bZIP MeSH
- tunikamycin MeSH