molybdenum oxide Dotaz Zobrazit nápovědu
The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.
- MeSH
- antibakteriální látky farmakologie MeSH
- lidé MeSH
- molybden farmakologie MeSH
- reaktivní formy kyslíku MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- graphene oxide MeSH Prohlížeč
- molybden MeSH
- reaktivní formy kyslíku MeSH
Molybdenum belongs to a group of essential microelements and occurs in all components of the environment. Major Mo sources for man are foods, especially vegetable, to a lesser extent drinking water. Its metabolism is primarily influenced by interaction with other metals, specifically copper and iron. In the organism it is primarily accumulated in the liver, kidneys, skin and hard tissues. In the blood it binds specifically with alpha-2-macroglobulin, in the erythrocytic membrane with spectrin; it enhances the osmotic resistance of red blood cells. From the organism it is eliminated in the urine, bile and feces. The biochemical importance of molybdenum lies in that it catalyzes the oxidation of xanthine and purine bases and the reduction of nitrates and molecular nitrogen; it is also present in the prosthetic group of flavoprotein enzymes. As shown in both epidemiological and animal studies, molybdenum ions may prevent dental caries. Long-term overexposure to Mo may produce molybdenosis (teart) in cattle. Increased exposures of humans may be primarily encountered in the foundry industry, but the toxic manifestations are invariably nonspecific, similarly as in the case of other heavy metals. Molybdenum-exposed workers may also show elevated uric acid concentrations in their blood, simultaneously with clinical symptoms resembling gout (gout-like syndrome). A similar finding may also occur among individuals living in areas characterized by elevated molybdenum and decreased copper contents in soil. The maximum allowable concentration limits established for soluble and insoluble molybdenum compounds in the workplace air have been accepted in many countries, but their values vary in a wide range. No specific exposure test for molybdenum has been developed as yet.
- MeSH
- analýza potravin MeSH
- dítě MeSH
- dospělí MeSH
- intestinální absorpce MeSH
- lidé MeSH
- molybden * analýza terapeutické užití MeSH
- nutriční hodnota MeSH
- sírany metabolismus MeSH
- tkáňová distribuce MeSH
- voda analýza MeSH
- vystavení vlivu životního prostředí MeSH
- xanthinoxidasa metabolismus MeSH
- žluč metabolismus MeSH
- zubní kaz prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- molybden * MeSH
- sírany MeSH
- voda MeSH
- xanthinoxidasa MeSH
A local molybdenum-reducing bacterium was isolated and tentatively identified as Acinetobacter calcoaceticus strain Dr.Y12 based on carbon utilization profiles using Biolog GN plates and 16S rDNA comparative analysis. Molybdate reduction was optimized under conditions of low dissolved oxygen (37 degrees C and pH 6.5). Of the electron donors tested, glucose, fructose, maltose and sucrose supported molybdate reduction after 1 d of incubation, glucose and fructose supporting the highest Mo-blue production. Optimum Mo-blue production was reached at 20 mmol/L molybdate and 5 mmol/L phosphate; increasing the phosphate concentrations inhibited the production. An increase in an overall absorption profiles, especially at peak maximum at 865 nm and the shoulder at 700 nm, was observed in direct correlation with the increased in Mo-blue amounts. Metal ions, such as chromium, cadmium, copper, mercury and lead (2 mmol/L final concentration) caused approximately 88, 53, 80, 100, and 20 % inhibition, respectively. Respiratory inhibitors, such as antimycin A, rotenone, sodium azide and cyanide showed in this bacterium no inhibition of the Mo-blue production, suggesting that the electron transport system is not a site of molybdate reduction.
- MeSH
- Acinetobacter calcoaceticus genetika izolace a purifikace metabolismus MeSH
- molekulární sekvence - údaje MeSH
- molybden metabolismus MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- molybden MeSH
Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.
- Klíčová slova
- cytotoxicity, hydrolysis, luminescence, molybdenum, octahedral iodide cluster, oxidized dextran polysaccharide, photodynamic therapy, stability, tungsten,
- MeSH
- dextrany MeSH
- dimethylsulfoxid MeSH
- jodidy MeSH
- molybden * chemie MeSH
- peroxid vodíku MeSH
- wolfram * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dextrany MeSH
- dimethylsulfoxid MeSH
- jodidy MeSH
- molybden * MeSH
- peroxid vodíku MeSH
- wolfram * MeSH
The toxic effect of molybdenum lies in the inhibition of the activity of the sulphide oxidase system and in the formation of thiomolybdate from molybdate and endogenous sulphides. Sulphate ions activate the enzymic system oxidizing sulphide and thiomolybdate thus restraining the formation of thiomolybdate and accelerating the oxidation of thiomolybdate to the less toxic molybdate.
- MeSH
- dieta MeSH
- dietní proteiny MeSH
- játra enzymologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- měď metabolismus farmakologie MeSH
- molybden metabolismus toxicita MeSH
- oxidoreduktasy působící na donory sirných skupin metabolismus MeSH
- sírany farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dietní proteiny MeSH
- měď MeSH
- molybden MeSH
- oxidoreduktasy působící na donory sirných skupin MeSH
- sírany MeSH
The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.
X-ray-induced photodynamic therapy (X-PDT) has recently evolved into a suitable modality to fight cancer. This technique, which exploits radiosensitizers producing reactive oxygen species, allows for a reduction of the radiation dose needed to eradicate cancer in the frame of the radiotherapy treatment of deep tumors. The use of transition metal complexes able to directly produce singlet oxygen, O2(1Δg), upon X-ray irradiation constitutes a promising route towards the optimization of the radiosensitizer's architecture. In our endeavour to conceive pertinent agents for X-PDT, we designed an octahedral molybdenum cluster complex (Mo6) with iodine inner ligands, and carboxylated apical ligands bearing ethylene oxide organic functions. The sodium salt of this complex is highly soluble in aqueous media and displays red luminescence which is efficiently quenched by oxygen to produce O2(1Δg) in a high quantum yield. Furthermore, due to its high radiodensity, the complex exhibits radioluminescence in aqueous media, with the same spectral features as for photoluminescence, indicating the production of O2(1Δg) upon X-ray irradiation. The uptake of the complex by Hep-2 and MRC-5 cells is negligible during the first hours of incubation, then considerably increases in connection with the hydrolysis of the apical ligands. The complex exhibits low toxicity in vitro and induces a radiotoxic effect, noticeable against cancerous Hep-2 cells but negligible against normal MRC-5 cells, at X-ray doses that do not affect cell viability otherwise. The first evaluation of in vivo toxicity of an Mo6 complex on a mouse model evidences a moderate and delayed toxic effect on kidneys, with an intravenous LD50 value of 390 ± 30 mg kg-1, possibly connected with hydrolysis-induced aggregation of the complex. Overall, this complex displays attractive features as a singlet oxygen radiosensitizer for X-PDT, highlighting the potential of transition metal cluster complexes towards this modality.
- MeSH
- fotochemoterapie * MeSH
- fotosenzibilizující látky MeSH
- molybden MeSH
- myši MeSH
- rentgenové záření MeSH
- singletový kyslík MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosenzibilizující látky MeSH
- molybden MeSH
- singletový kyslík MeSH
- voda MeSH
The fight against infective microorganisms is becoming a worldwide priority due to serious concerns about the rising numbers of drug-resistant pathogenic bacteria. In this context, the inactivation of pathogens by singlet oxygen, O2(1Δg), produced by photosensitizers upon light irradiation has become an attractive strategy to combat drug-resistant microbes. To achieve this goal, we electrophoretically deposited O2(1Δg)-photosensitizing octahedral molybdenum cluster complexes on indium-tin oxide-coated glass plates. This procedure led to the first example of molecular photosensitizer layers able to photoinactivate bacterial biofilms. We delineated the morphology, composition, luminescence, and singlet oxygen formation of these layers and correlated these features with their antibacterial activity. Clearly, continuous 460 nm light irradiation imparted the layers with strong antibacterial properties, and the activity of these layers inhibited the biofilm formation and eradicated mature biofilms of Gram-positive Staphylococcus aureus and Enterococcus faecalis, as well as, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacterial strains. Overall, the microstructure-related oxygen diffusivity of the layers and the water stability of the complexes were the most critical parameters for the efficient and durable use. These photoactive layers are attractive for the design of antibacterial surfaces activated by visible light and include additional functionalities such as the conversion of harmful UV/blue light to red light or oxygen sensing.
- Klíčová slova
- biofilm, electrophoretic deposition, luminescence, molybdenum cluster complex, phototoxicity, singlet oxygen,
- MeSH
- biofilmy účinky léků MeSH
- Enterococcus faecalis fyziologie MeSH
- Escherichia coli fyziologie MeSH
- fotosenzibilizující látky chemie farmakologie MeSH
- komplexní sloučeniny chemie farmakologie MeSH
- molybden chemie MeSH
- singletový kyslík chemie metabolismus MeSH
- sklo chemie MeSH
- Staphylococcus aureus fyziologie MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosenzibilizující látky MeSH
- komplexní sloučeniny MeSH
- molybden MeSH
- singletový kyslík MeSH
MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.
- Publikační typ
- časopisecké články MeSH
With a large-scale usage of portable electric appliances, a high demand for increasingly high-density energy storage devices has emerged. MoO3 has, in principle, a large potential as a negative electrode material in supercapacitive devices due to high charge densities that can be obtained from its reversible redox reactions. Nevertheless, the extremely poor electrochemical stability of MoO3 in aqueous electrolytes prevents a practical use in high capacitance devices. In this work, we describe how to overcome this severe stability issue by forming amorphous molybdenum oxide/tantalum oxide nanotubes by anodic oxidation of a Mo-Ta alloy. The presence of a critical amount of Ta oxide (>20 at. %) prevents the electrochemical decay of the MoO3 phase and thus yields an extremely high stability. Due to the protection provided by tantalum oxide, no capacitance losses are measureable after 10,000 charging/discharging cycles.
- Klíčová slova
- Mo oxide, Ta oxide, cycle stability, nanotubes, supercapacitor,
- Publikační typ
- časopisecké články MeSH