remanence Dotaz Zobrazit nápovědu
The wide application of Nd-Fe-B permanent magnets, in addition to rare-earth metal resource constraints, creates the necessity of the development of efficient technologies for recycling sintered Nd-Fe-B permanent magnets. In the present study, a magnet-to-magnet recycling process is considered. As starting materials, magnets of different grades were used, which were processed by hydrogen decrepitation and blending the powder with NdHx. Composition inhomogeneity in the Nd2Fe14B-based magnetic phase grains in the recycled magnets and the existence of a core-shell structure consisting of a Nd-rich (Dy-depleted) core and Nd-depleted (Dy-enriched) shell are demonstrated. The formation of this structure results from the grain boundary diffusion process of Dy that occurs during the sintering of magnets prepared from a mixture of Dy-free (N42) and Dy-containing magnets. The increase in the coercive force of the N42 magnet was shown to be 52%. The simultaneous retention of the remanence, and even its increase, were observed and explained by the improved isolation of the main magnetic phase grains as well as their alignment.
- Klíčová slova
- Nd-Fe-B magnets, coercive force, grain-boundary diffusion, hydrogen decrepitation, recycling, remanence,
- Publikační typ
- časopisecké články MeSH
A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 - 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700-1300 A.D.) than during the Little Ice Age (1300-1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition.
- Publikační typ
- časopisecké články MeSH
Composite nanoparticles with variable ratios of M-type Sr-hexaferrite and maghemite phases were prepared via the sol-gel method employing polyvinylalcohol as the stabilizing agent, followed by thermal treatment at 600 °C for 32-190 min. The measurements in static magnetic field revealed considerable variation of the coercivity and remanence depending on the relative content of the highly magnetically anisotropic Sr-hexaferrite phase. Calorimetric heating experiments were carried out on aqueous gel suspensions under an alternating magnetic field of maximum amplitude H(max) = 15.1-68.4 kA m(-1) and frequency ν = 108 kHz. They showed a strong dependence of the heating efficiency on the coercivity and remanence of the composites, with a specific absorption rate (SAR) value ranging from units to tens of W/g(Fe(ferrimagnetic)).
- Publikační typ
- časopisecké články MeSH
Spin-valves had empowered the giant magnetoresistance (GMR) devices to have memory. The insertion of thin antiferromagnetic (AFM) films allowed two stable magnetic field-induced switchable resistance states persisting in remanence. In this letter, we show that, without the deliberate introduction of such an AFM layer, this functionality is transferred to multiferroic tunnel junctions (MFTJ) allowing us to create a four-state resistive memory device. We observed that the ferroelectric/ferromagnetic interface plays a crucial role in the stabilization of the exchange bias, which ultimately leads to four robust electro tunnel electro resistance (TER) and tunnel magneto resistance (TMR) states in the junction.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Copper ore mining and processing are among the most harmful anthropogenic influences for the environment and they are a subject of international and national law regulations. Recultivation of areas influenced by mining and processing industry is commonly applied and monitored in order to restore as much as possible the natural environment. In this study, environmental magnetic methods are applied in order to assess the degree of soil restoration in terms of soil development, after remediation of waste dump from Cu-processing plant. Soils developed under birch forest stands of different age (5, 15, and 25 years) as well as raw waste material were sampled along depth down to 20-30 cm. Variations in magnetic parameters and ratios obtained (magnetic susceptibility, frequency-dependent magnetic susceptibility, anhysteretic remanence (ARM), isothermal remanence (IRM), ARM/IRM100mT) suggest the presence of magnetic enhancement in the upper 0-15 cm, the thickness of this layer varying depending on the age of the forest stand. Magnetic mineral responsible for this enhancement is of magnetite type, while waste material contains a large amount of hematite, as evidenced by coercivity analysis of IRM acquisition curves and thermal demagnetization of composite IRM. Magnetic grain-sized proxy parameters suggest that magnetite particles are coarser, magnetically stable, while no or minor amount of superparamagnetic grains were detected at room temperature. A well-defined linear regression between the topsoil magnetic susceptibility and the approximate age of the forest stand provides an indication that the magnetic enhancement is of pedogenic origin. It is concluded that the observed magnetic enhancement of recultivated soils studied is linked to a combined effect of pedogenic contribution and possible additions of industrial ashes as a liming agent for soil restoration.
- Klíčová slova
- Copper mining, Environmental magnetism, Pedogenic magnetic minerals, Technosols,
- MeSH
- hornictví MeSH
- hutnictví * MeSH
- látky znečišťující půdu analýza MeSH
- lesy MeSH
- magnetismus * MeSH
- měď analýza MeSH
- minerály analýza MeSH
- monitorování životního prostředí metody MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bulharsko MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- měď MeSH
- minerály MeSH
- půda MeSH
Geomagnetic fields interfere with the accumulation of iron in the human brain. Magnetic sensing of the human brain provides compelling evidence of new electric mechanisms in human brains and may interfere with the evolution of neurodegenerative diseases. We revealed that the human brain may have a unique susceptibility to conduct electric currents as feedback of magnetic dipole fluctuation in superparamagnetic grains. These grains accumulate and grow with brain aging. The electric feedback creates an electronic noise background that depends on geomagnetic field intensity and may compromise functional stability of the human brain, while induced currents are spontaneously generated near superparamagnetic grains. Grain growth due to an increase of iron mobility resulted in magnetic remanence enhancement during the final years of the studied brains.
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetické jevy * MeSH
- mozek metabolismus patologie MeSH
- neurodegenerativní nemoci metabolismus patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- železo analýza metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- železo MeSH
Multiwall carbon nanotubes (MWCNTs) fabricated by chemical vapor deposition contain magnetic nanoparticles. While increasing frequency of electromagnetic field (EMF) exposure (up to <10 kHz) of MWCNTs resulted in slight induced magnetization decrease due to skin effect of the conducting carbon, we discovered that higher frequencies (>10 kHz) contained an exponential magnetization increase. We show that puzzling magnetization increase with decreasing magnetic field amplitude (less than 0.5 A/m for 512 kHz) is due to matching the field amplitudes of the magnetic nanoparticles inside nanotubes. This observation reveals a possibility of magnetic tunneling in MWCNTs (change of magnetic state of blocked magnetic moments). This interpretation is supported by observation of unblocking larger magnetic remanence (MR) portion from MWCNTs with progressively smaller amplitude of oscillating magnetic field.
- Publikační typ
- časopisecké články MeSH
Chicxulub impact (66 Ma) event resulted in deposition of spheroids and melt glass, followed by deposition of diamectite and carbonate ejecta represented by large polished striated rounded pebbles and cobbles, henceforth, called Albion Formation1 Pook's Pebbles, name given from the first site identified in central Belize, Cayo District. Here we report that magnetic analysis of the Pook's Pebbles samples revealed unique electric discharge signatures. Sectioning of Pook's Pebbles from the Chicxulub ejecta from the Albion Formation at Belize showed that different parts of Pook's Pebbles had not only contrasting magnetization directions, but also sharply different level of magnetizations. Such behavior is indicative of electric discharge taking place sometimes during the formation of the Chicxulub ejecta blanket. In addition, some of the Pook's Pebbles' surface had recrystallized down to 0.2 mm depth. This is evidence of localized extreme pressures and temperatures during the fluidized ejecta formation which was imprinted in the outer layer of Pook's Pebbles. Recrystallization caused formation of nanophase iron along the surface, which was revealed by mapping of both natural remanent magnetization and of saturation remanence magnetization signatures. While the spheroids' magnetization orientation is consistent with reversed magnetic field at the time of impact, the study of the Pook's Pebbles provided, in addition, new evidence of electric charging during the vapor plume cloud processes.
- Publikační typ
- časopisecké články MeSH
The focus of new technologies on the formation of inhomogeneous distributions of heavy rare-earth metals (REMs) in hard magnetic Nd-Fe-B materials is of scientific importance to increase their functional properties, along with preserving existing sources of heavy REMs. This paper focused on the coercivity enhancement of Nd2Fe14B-based magnets by optimizing the microstructure, which includes the processes of grain boundary structuring via the application of a Dy3Co0.6Cu0.4Hx alloy added to the initial Nd-Fe-B-based powder mixtures in the course of their mechanical activation. We have studied the role of alloying elements in the formation of phase composition, microstructure, the fine structure of grains, and the hysteretic properties of hard magnetic Nd(R)2Fe14B-based materials. It was shown that the Dy introduction via the two-component blending process (the hydrogenated Dy3Co0.6Cu0.4 compound is added to a powder mixture) resulted in the formation of the core-shell structure of 2-14-1 phase grains. The efficient improvement of the coercivity of Nd(RE)-Fe-B magnets, with a slight sacrifice of remanence, was demonstrated.
- Klíčová slova
- Nd–Fe–B magnets, grain boundary diffusion, hydrogenation, magnetic properties, microstructure,
- Publikační typ
- časopisecké články MeSH
Low-dimensional materials exhibiting stable magnetic ordering are interesting from a fundamental point of view as well as for future application in information technologies. Metalorganic magnets, created by linking metal atoms with specific organic molecules, allow adjustments to their properties by synthetically modifying the structure of these molecules or the way they connect to the metal atoms. Here, the study details the formation, structure, and magnetic behavior of a single-layer 2D metalorganic coordination network made of Ni atoms and tetracyanoethylene (TCNE) molecules (2D Ni-TCNE). Single-layer crystal domains of this 2D material are achieved by codeposition Ni atoms and TCNE on a Au(111) surface kept in vacuum. Non-contact atomic force microscopy visualizes the structure with atomic resolution. X-ray magnetic circular dichroism establishes the 2D NiTCNE as a ferromagnet, with high magnetic remanence and a coercive field of ≈1 tesla at 3 kelvin. The Curie temperature is between 10 and 20 kelvin. Metalorganic chemistry opens a large variety of routes of synthesis and it is anticipated that this materials research paves the way to new magnetic nanomaterials for spintronic applications.
- Klíčová slova
- ferromagnetism in low dimensions, scanning probe microscopy, single‐layer low‐dimensional metalorganics,
- Publikační typ
- časopisecké články MeSH