The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.
- Keywords
- Raman spectroscopy, functionalization, graphene, hydrogenation, surface chemistry,
- Publication type
- Journal Article MeSH
The non-specific binding of non-target species to functionalized surfaces of biosensors continues to be challenge for biosensing in real-world media. Three different low-fouling and functionalizable surface platforms were employed to study the effect of functionalization on fouling resistance from several types of undiluted media including blood plasma and food media. The surface platforms investigated in this work included two polymer brushes: hydroxy-functional poly(2-hydroxyethyl methacrylate) (pHEMA) and carboxy-functional poly(carboxybetaine acrylamide) (pCBAA), and a standard OEG-based carboxy-functional alkanethiolate self-assembled monolayer (AT-SAM). The wet and dry polymer brushes were analyzed by AFM, ellipsometry, FT-IRRAS, and surface plasmon resonance (SPR). The surfaces were functionalized by the covalent attachment of antibodies, streptavidin, and oligonucleotides and the binding and biorecognition characteristics of the coatings were compared. We found that functionalization did not substantially affect the ultra-low fouling properties of pCBAA (plasma fouling of ~20 ng/cm(2)), a finding in contrast with pHEMA that completely lost its resistance to fouling after the activation of hydroxyl groups. Blocking a functionalized AT-SAM covalently with BSA decreased fouling down to the level comparable to unblocked pCBAA. However, the biorecognition capability of blocked functionalized AT-SAM was poor in comparison with functionalized pCBAA. Limits of detection of Escherichia coli O157:H7 in undiluted milk were determined to be 6×10(4), 8×10(5), and 6×10(5) cells/ml for pCBAA, pHEMA, and AT-SAM-blocked, respectively. Effect of analyte size on biorecognition activity of functionalized coatings was investigated and it was shown that the best performance in terms of overall fouling resistance and biorecognition capability is provided by pCBAA.
- Keywords
- Functionalization, Low-fouling coatings, Polymer brushes, Surface chemistry, Surface plasmon resonance sensor,
- MeSH
- Adsorption MeSH
- Acrylamides chemistry MeSH
- Escherichia coli isolation & purification MeSH
- Limit of Detection MeSH
- Milk microbiology MeSH
- Polyhydroxyethyl Methacrylate chemistry MeSH
- Polymers chemistry MeSH
- Surface Plasmon Resonance methods MeSH
- Surface Properties MeSH
- Sulfhydryl Compounds chemistry MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Acrylamides MeSH
- poly(carboxybetaine acrylamide) MeSH Browser
- Polyhydroxyethyl Methacrylate MeSH
- Polymers MeSH
- Sulfhydryl Compounds MeSH
Composite insulation materials are an inseparable part of numerous electrical devices because of synergy effect between their individual parts. One of the main aims of the presented study is an introduction of the dielectric properties of nanoscale magnesium oxide powder via Broadband Dielectric Spectroscopy (BDS). These unique results present the behavior of relative permittivity and loss factor in frequency and temperature range. Following the current trends in the application of inorganic nanofillers, this article is complemented by the study of dielectric properties (dielectric strength, volume resistivity, dissipation factor and relative permittivity) of epoxy-based composites depending on the filler amount (0, 0.5, 0.75, 1 and 1.25 weight percent). These parameters are the most important for the design and development of the insulation systems. The X-ray diffraction patterns are presented for pure resin and resin with optimal filler amount (1 wt %), which was estimated according to measurement results. Magnesium oxide nanoparticles were also treated by addition of silane coupling agent ( γ -Glycidoxypropyltrimethoxysilane), in the case of optimal filler loading (1 wt %) as well. Besides previously mentioned parameters, the effects of surface functionalization have been observed by two unique measurement and evaluation techniques which have never been used for this evaluation, i.e., reduced resorption curves (RRCs) and voltage response method (VR). These methods (developed in our departments), extend the possibilities of measurement of composite dielectric responses related to DC voltage application, allow the facile comparability of different materials and could be used for dispersion level evaluation. This fact has been confirmed by X-ray diffraction analyses.
- Keywords
- broadband dielectric spectroscopy, dielectric strength, loss factor, magnesium oxide, nanocomposite, relative permittivity, surface functionalization, voltage response,
- Publication type
- Journal Article MeSH
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm2. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.
- Keywords
- C:H:N:O thin film, Lyme disease, ag nanoparticles, borrelia, localized surface plasmon resonance, magnetron sputtering, nanocomposite, nylon, plasma polymer, surface functionalization,
- MeSH
- Metal Nanoparticles * chemistry MeSH
- Nanocomposites * chemistry MeSH
- Surface Plasmon Resonance * MeSH
- Silver * chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Silver * MeSH
Beyond graphene, 2D pnictogen polymers are rapidly growing among the family of 2D materials. Due to their unique properties, this group has received considerable interest in recent years. Those properties include tunable electronic band gaps, high charge carrier mobility, and in-plane anisotropic properties. This Review covers the noncovalent functionalization of pnictogen surfaces considering experimental and theoretical studies. Noncovalent functionalization is of great importance for effective modulation of the electronic structure of these materials as well as improvement of their stability toward surface oxidation. This Review highlights their noncovalent modification by organic molecules, in which enhanced surface stability of phosphorene and generated functionalized materials for applications in biomedical, supercapacitors, energy storage, and biosensors. Moreover, the noncovalent interactions with small molecules show its significance for sensing applications. Lastly, the interactions of pnictogen sheets with other 2D materials and their applications for van der Waals heterostructure formation are discussed. Current state-of-the-art as well as future perspectives in this field are covered.
- Keywords
- antimonene, arsenene, noncovalent functionalization, phosphorene, pnictogens,
- Publication type
- Journal Article MeSH
- Review MeSH
Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent-a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface- or graphene-enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.
- Keywords
- Mitsunobu reaction, Raman spectroscopy, graphene, patterned functionalization, photochemistry,
- Publication type
- Journal Article MeSH
Two-dimensional materials attract enormous attention across several scientific fields. The current demands in nano- and optoelectronics, semiconductors, or in catalysis have been accelerating the research process in the field of 2D materials. Among the 14th group 2D materials besides graphene and silicene, layered germanium represents a promising candidate for another class of materials, and its functionalization represents a way to tune either its electronic or optical properties. Here, the exfoliation and functionalization of germanane surface is achieved via abstraction of hydrogen from Ge-H bond and its subsequent alkylation utilizing n-alkyl halides or trifluoromethyl (CF3) group containing benzyl halides. Composition of materials is confirmed by several methods including FT-IR, Raman, X-ray photoelectron, and energy-dispersive X-ray spectroscopy as well as X-ray powder diffraction. Scanning and transmission electron spectroscopy is used to reveal the layered morphology of functionalized germananes.
- Keywords
- 2D material, chemical modification, exfoliation, germanane, surface functionalization,
- Publication type
- Journal Article MeSH
Two-dimensional transition metal carbides and nitrides (MXenes) are a promising group of materials with a broad palette of applications. Surface terminations are a result of MXene preparation, and post-processing can also lead to partial coverage. Despite applicability and fundamental properties being driven by termination patterns, it is not fully clear how they behave on MXene surfaces with various degrees of surface coverage. Here, as the first step, we used density functional theory to predict possible patterns in prototypic Ti2C MXene, demonstrating the different behavior of the two most frequent terminal atoms, oxygen, and fluorine. Oxygen (with formal charge -2e) prefers a zigzag line both-side adsorption pattern on bare Ti2C, attracting the next adsorbent at a minimal distance. Oxygen defects in fully O-terminated MXene tend to form similar zigzag line vacancy patterns. On the other hand, fluorine (with a formal charge of -1e) prefers one-side flake (island) adsorption on bare Ti2C and a similar desorption style from fully fluorinated Ti2C. The magnetic behavior of the MXene is subsequently driven by the patterns, either compensating locally and holding the global magnetic state of the MXene until some limit (oxygen case) or gradually increasing the total magnetism through summation of local effects (fluorine case). The systematic combinatoric study of Ti2CTx with various coverages (0 ≤ x ≤ 2) of distinct terminal atoms T = O or F brings encouraging possibilities of tunable behavior of MXenes and provides useful guidance for its modeling towards electronic nanodevices.
- Publication type
- Journal Article MeSH
Due to their good mechanical stability compared to gelatin, collagen or polyethylene glycol nanofibers and slow degradation rate, biodegradable poly-ε-caprolactone (PCL) nanofibers are promising material as scaffolds for bone and soft-tissue engineering. Here, PCL nanofibers were prepared by the electrospinning method and then subjected to surface functionalization aimed at improving their biocompatibility and bioactivity. For surface modification, two approaches were used: (i) COOH-containing polymer was deposited on the PCL surface using atmospheric pressure plasma copolymerization of CO2 and C2H4, and (ii) PCL nanofibers were coated with multifunctional bioactive nanostructured TiCaPCON film by magnetron sputtering of TiC-CaO-Ti3POx target. To evaluate bone regeneration ability in vitro, the surface-modified PCL nanofibers were immersed in simulated body fluid (SBF, 1×) for 21 days. The results obtained indicate different osteoblastic and epithelial cell response depending on the modification method. The TiCaPCON-coated PCL nanofibers exhibited enhanced adhesion and proliferation of MC3T3-E1 cells, promoted the formation of Ca-based mineralized layer in SBF and, therefore, can be considered as promising material for bone tissue regeneration. The PCL-COOH nanofibers demonstrated improved adhesion and proliferation of IAR-2 cells, which shows their high potential for skin reparation and wound dressing.
- Keywords
- XPS, mineralization, plasma modification, polycaprolactone nanofibers, tissue engineering,
- Publication type
- Journal Article MeSH
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
- MeSH
- Adsorption MeSH
- Amines chemistry MeSH
- Carcinoma, Hepatocellular metabolism pathology MeSH
- Protein Conformation MeSH
- Lysosomes metabolism MeSH
- Cell Line, Tumor MeSH
- Liver Neoplasms metabolism pathology MeSH
- Nanoparticles chemistry MeSH
- Silicon Dioxide chemistry MeSH
- Permeability MeSH
- Polystyrenes chemistry MeSH
- Surface Properties MeSH
- Cell Proliferation MeSH
- Ribonucleases metabolism MeSH
- Serum Albumin, Bovine metabolism MeSH
- Signal Transduction * MeSH
- Cattle MeSH
- TOR Serine-Threonine Kinases metabolism MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amines MeSH
- Silicon Dioxide MeSH
- Polystyrenes MeSH
- Ribonucleases MeSH
- Serum Albumin, Bovine MeSH
- TOR Serine-Threonine Kinases MeSH