Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19931336
DOI
10.1016/j.neuint.2009.11.011
PII: S0197-0186(09)00316-7
Knihovny.cz E-zdroje
- MeSH
- agonisté excitačních aminokyselin farmakologie MeSH
- aldehydy metabolismus MeSH
- časové faktory MeSH
- down regulace účinky léků fyziologie MeSH
- energetický metabolismus účinky léků fyziologie MeSH
- epilepsie metabolismus patofyziologie MeSH
- homocystein analogy a deriváty toxicita MeSH
- konvulziva toxicita MeSH
- krysa rodu Rattus MeSH
- metabolické sítě a dráhy fyziologie MeSH
- míra přežití MeSH
- mitochondriální nemoci chemicky indukované metabolismus patofyziologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mozková kůra metabolismus patologie patofyziologie MeSH
- novorozená zvířata MeSH
- oxidační stres účinky léků fyziologie MeSH
- potkani Wistar MeSH
- respirační komplex I účinky léků metabolismus MeSH
- scavengery volných radikálů farmakologie MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- záchvaty chemicky indukované metabolismus patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-nitrotyrosine MeSH Prohlížeč
- 4-hydroxy-2-nonenal MeSH Prohlížeč
- agonisté excitačních aminokyselin MeSH
- aldehydy MeSH
- homocysteic acid MeSH Prohlížeč
- homocystein MeSH
- konvulziva MeSH
- respirační komplex I MeSH
- scavengery volných radikálů MeSH
- tyrosin MeSH
Our previous work demonstrated the marked decrease of mitochondrial complex I activity in the cerebral cortex of immature rats during the acute phase of seizures induced by bilateral intracerebroventricular infusion of dl-homocysteic acid (600 nmol/side) and at short time following these seizures. The present study demonstrates that the marked decrease ( approximately 60%) of mitochondrial complex I activity persists during the long periods of survival, up to 5 weeks, following these seizures, i.e. periods corresponding to the development of spontaneous seizures (epileptogenesis) in this model of seizures. The decrease was selective for complex I and it was not associated with changes in the size of the assembled complex I or with changes in mitochondrial content of complex I. Inhibition of complex I was accompanied by a parallel, up to 5 weeks lasting significant increase (15-30%) of three independent mitochondrial markers of oxidative damage, 3-nitrotyrosine, 4-hydroxynonenal and protein carbonyls. This suggests that oxidative modification may be most likely responsible for the sustained deficiency of complex I activity although potential role of other factors cannot be excluded. Pronounced inhibition of complex I was not accompanied by impaired ATP production, apparently due to excess capacity of complex I documented by energy thresholds. The decrease of complex I activity was substantially reduced by treatment with selected free radical scavengers. It could also be attenuated by pretreatment with (S)-3,4-DCPG (an agonist for subtype 8 of group III metabotropic glutamate receptors) which had also a partial antiepileptogenic effect. It can be assumed that the persisting inhibition of complex I may lead to the enhanced production of reactive oxygen and/or nitrogen species, contributing not only to neuronal injury demonstrated in this model of seizures but also to epileptogenesis.
Citace poskytuje Crossref.org
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague
Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats
Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria
In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism
In vitro effects of antipsychotics on mitochondrial respiration