Lipid polymorphism in chloroplast thylakoid membranes - as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29042649
PubMed Central
PMC5645462
DOI
10.1038/s41598-017-13574-y
PII: 10.1038/s41598-017-13574-y
Knihovny.cz E-zdroje
- MeSH
- fluorescenční spektrometrie * metody MeSH
- izotopy fosforu * MeSH
- katalýza MeSH
- koncentrace vodíkových iontů MeSH
- lipidy chemie MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- tylakoidy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy fosforu * MeSH
- lipidy MeSH
Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.
EN FIST Center of Excellence Trg OF 13 Ljubljana Slovenia
Faculty of Chemistry and Chemical Technology Večna pot 113 Ljubljana Slovenia
Slovenian NMR Center National Institute of Chemistry Hajdrihova 19 Ljubljana Slovenia
Zobrazit více v PubMed
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Cambridge Philosophic. 1966;41:445–502. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI
Williams, W. P. The physical properties of thylakoid membrane lipids and their relation to photosynthesis in Advances in Photosynthesis. Lipids in Photosynthesis (eds. Siegenthaler, P. A. & Murata, N.) 103–118 (Kluwer Academic Publishers, 1998).
Douce, R. & Joyard, J. Biosynthesis of thylakoid membrane lipids in Oxygenic Photosynthesis: The Light Reactions (eds. Ort, D. R. & Yocum, C. F.) 69–101 (Kluwer Academic Publishers, 1996).
Epand RM. Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta-Rev. Biomembr. 1998;1376:353–368. doi: 10.1016/S0304-4157(98)00015-X. PubMed DOI
Van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta - Biomembr. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI
Guskov A, et al. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 2009;16:334–342. doi: 10.1038/nsmb.1559. PubMed DOI
Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI
Qin XC, Suga M, Kuang TY, Shen JR. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015;348:989–995. doi: 10.1126/science.aab0214. PubMed DOI
Wei X, et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI
Páli T, Garab G, Horváth LI, Kóta Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell. Mol. Life Sci. 2003;60:1591–1606. doi: 10.1007/s00018-003-3173-x. PubMed DOI PMC
Sackman, E. Biological membranes architecture and function in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackmann, E.) 1–65 (Elsevier, 1995).
Dimitrov, D. S. Electroporation and electrofusion of membranes in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackman, E.) 851–903 (Elsevier, 1995).
Seddon, J. M. & Templer, R. H. Polymorphism of lipid–water system in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackman, E.) 97–161 (Elsevier, 1995).
Jouhet, J. Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci. 4 (2013). PubMed PMC
Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids. 1996;81:203–213. doi: 10.1016/0009-3084(96)02583-2. PubMed DOI
Zick, M., Stroupe, C., Orr, A., Douville, D. & Wickner, W. T. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife3 (2014). PubMed PMC
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. Biochim. Biophys. Acta - Bioenerg. 2017;1859:537–549. doi: 10.1016/j.bbamem.2016.09.025. PubMed DOI
Simidjiev I, et al. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC
Demé B, Cataye C, Block MA, Maréchal E, Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 2014;28:3373–3383. doi: 10.1096/fj.13-247395. PubMed DOI
Kowalewska L, Mazur R, Suski S, Garstka M, Mostowska A. Three-dimensional visualization of the internal plastid membrane network during runner bean chloroplast biogenesis. Dynamic model of the tubular-lamellar transformation. Plant Cell. 2016;28:875–891. PubMed PMC
Lee AG. Membrane lipids: it’s only a phase. Curr. Biol. 2000;10:R377–R380. doi: 10.1016/S0960-9822(00)00477-2. PubMed DOI
Janik E, et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell. 2013;25:2155–2170. doi: 10.1105/tpc.113.113076. PubMed DOI PMC
van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta - Biomembr. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI
de Kruijff BB. Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI
Brown MF. Curvature forces in membrane lipid-protein interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. PubMed DOI
Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta - Biomembr. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI
Garab G, Lohner K, Laggner P, Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI
Barros T, Kühlbrandt W. Crystallisation, structure and function of plant light-harvesting Complex II. Biochim. Biophys. Acta - Bioenerg. 2009;1787:753–772. doi: 10.1016/j.bbabio.2009.03.012. PubMed DOI
Gounaris K, Barber J. Monogalactosyldiacylglycerol - the most abundant polar lipid in nature. Trends Biochem.Sci. 1983;8:378–381. doi: 10.1016/0968-0004(83)90366-3. DOI
Simidjiev I, Barzda V, Mustárdy L, Garab G. Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry. 1998;37:4169–4173. doi: 10.1021/bi972726m. PubMed DOI
Horváth I, et al. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog. Lipid Res. 2012;51:208–220. doi: 10.1016/j.plipres.2012.02.002. PubMed DOI
Kirchhoff H, et al. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI
Semenova GA. The relationship between the transformation of thylakoid acyl lipids and the formation of tubular lipid aggregates visible on fracture faces. J. Plant Physiol. 1999;155:669–677. doi: 10.1016/S0176-1617(99)80081-9. DOI
Krumova SB, et al. Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim. Biophys. Acta - Biomembr. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI
Krumova SB, et al. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim. Biophys. Acta - Biomembr. 2008;1778:2823–2833. doi: 10.1016/j.bbamem.2008.09.007. PubMed DOI
Langner M, Hui SW. Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim. Biophys. Acta - Biomembr. 1999;1415:323–330. doi: 10.1016/S0005-2736(98)00185-0. PubMed DOI
Mandal D, Pal SK, Sukul D, Bhattacharyya K. Photophysical processes of merocyanine 540 in solutions and in organized media. J. Phys. Chem. A. 1999;103:8156–8159. doi: 10.1021/jp991506a. DOI
Bernik D, Tymczyszyn E, Daraio ME, Negri RM. Fluorescent dimers of merocyanine 540 (MC540) in the gel phase of phosphatidylcholine liposomes. Photochem. Photobiol. 1999;70:40–48. doi: 10.1111/j.1751-1097.1999.tb01947.x. DOI
Harańczyk H, Strzałka K, Dietrich W, Blicharski JS. 31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J. Biol. Phys. 1995;21:125–139. doi: 10.1007/BF00705595. DOI
Garab G, van Amerongen H. Linear dichroism and circular dichroism in photosynthesis research. Photosynth. Res. 2009;101:135–146. doi: 10.1007/s11120-009-9424-4. PubMed DOI PMC
Nagy G, et al. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E. 2013;36:69. doi: 10.1140/epje/i2013-13069-0. PubMed DOI
Chylla RA, Garab G, Whitmarsh J. Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes. Biochim. Biophys. Acta - Bioenerg. 1987;894:562–571. doi: 10.1016/0005-2728(87)90136-8. DOI
Ünnep R, et al. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta - Bioenerg. 2014;1837:1572–1580. doi: 10.1016/j.bbabio.2014.01.017. PubMed DOI
Adam Z, Charuvi D, Tsabari O, Knopf RR, Reich Z. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol. Biol. 2011;76:221–234. doi: 10.1007/s11103-010-9693-5. PubMed DOI
Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell. 2005;17:2580–2586. doi: 10.1105/tpc.105.035030. PubMed DOI PMC
Mustárdy L, Buttle K, Steinbach G, Garab G. The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell. 2008;20:2552–2557. doi: 10.1105/tpc.108.059147. PubMed DOI PMC
Thomas PG, et al. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta - Bioenerg. 1986;849:131–140. doi: 10.1016/0005-2728(86)90104-0. DOI
Williams WP, Brain APR, Dominy PJ. Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal-stability of Photosystem II. Biochim. Biophys. Acta - Bioenerg. 1992;1099:137–144. doi: 10.1016/0005-2728(92)90210-S. DOI
Garab, G., Ughy, B. & Goss, R. Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes in Lipids in Plant and Algae Development (eds. Nakamura, Y. & Li-Beisson, Y.) 127-157 (Springer, 2016). PubMed
Grzyb J, Latowski D, Strzalka K. Lipocalins - a family portrait. J. Plant Physiol. 2006;163:895–915. doi: 10.1016/j.jplph.2005.12.007. PubMed DOI
Boca S, et al. Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. Plant. Cell. Environ. 2014;37:368–381. doi: 10.1111/pce.12159. PubMed DOI
Hieber AD, Bugos RC, Yamamoto HY. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim. Biophys. Acta - Protein Struct. Molec. Enzym. 2000;1482:84–91. doi: 10.1016/S0167-4838(00)00141-2. PubMed DOI
Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta - Bioenerg. 2009;1787:3–14. doi: 10.1016/j.bbabio.2008.09.013. PubMed DOI
Levesque-Tremblay G, Havaux M, Ouellet F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 2009;60:691–702. doi: 10.1111/j.1365-313X.2009.03991.x. PubMed DOI
Malnoë A, Schultink A, Shahrasbi S, Niyogi K. The chloroplastic lipocalin is involved in a sustained photoprotective mechanism regulated by the Suppressor of Quenching 1 protein in Arabidopsis thaliana. Abstract book: The 17th International Congress on Photosynthesis Research, Photosynthesis in a Changing World. 2016;10:93–94.
Abo-Ogiala A, et al. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J. Plant Physiol. 2014;171:250–259. doi: 10.1016/j.jplph.2013.08.003. PubMed DOI
Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta - Bioenerg. 2012;1817:182–193. doi: 10.1016/j.bbabio.2011.04.012. PubMed DOI
Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1996;47:655–684. doi: 10.1146/annurev.arplant.47.1.655. PubMed DOI
Ruban AV, Johnson MP, Duffy CDP. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta - Bioenerg. 2012;1817:167–181. doi: 10.1016/j.bbabio.2011.04.007. PubMed DOI
Ruban AV. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016;170:1903–1916. doi: 10.1104/pp.15.01935. PubMed DOI PMC
Hind G, Nakatani HY, Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc. Natl. Acad. Sci. USA. 1974;71:1484–1488. doi: 10.1073/pnas.71.4.1484. PubMed DOI PMC
Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 2013;16:307–314. doi: 10.1016/j.pbi.2013.03.011. PubMed DOI
Ruban, A. V. & Johnson, M. P. Visualizing the dynamic structure of the plant photosynthetic membrane. Nat. Plants1 (2015). PubMed
Garab G, Leegood RC, Walker DA, Sutherland JC, Hind G. Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular-dichroism. Light-induced reversible structural changes associated with energy dissipation. Biochemistry. 1988;27:2430–2434.
Jajoo A, Szabó M, Zsiros O, Garab G. Low pH induced structural reorganization in thylakoid membranes. Biochim. Biophys. Acta - Bioenerg. 2012;1817:1388–1391. doi: 10.1016/j.bbabio.2012.01.002. PubMed DOI
Jajoo A, et al. Low pH-induced regulation of excitation energy between the two photosystems. FEBS Lett. 2014;588:970–974. doi: 10.1016/j.febslet.2014.01.056. PubMed DOI
Stoichev S, et al. Low pH modulates the macroorganization and thermal stability of PSII supercomplexes in grana membranes. Biophys. J. 2015;108:844–853. doi: 10.1016/j.bpj.2014.12.042. PubMed DOI PMC
Ünnep R, et al. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes - As revealed by small-angle neutron scattering. Biochim. Biophys. Acta - Bioenerg. 2017;1858:360–365. doi: 10.1016/j.bbabio.2017.02.010. PubMed DOI
Nagy G, et al. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 2011;436:225–230. doi: 10.1042/BJ20110180. PubMed DOI
Afonso D, et al. Triggering bilayer to inverted-hexagonal nanostructure formation by thiol-ene click chemistry on cationic lipids: consequences on gene transfection. Soft Matter. 2016;12:4516–4520. doi: 10.1039/C6SM00609D. PubMed DOI
Pott T, Maillet JC, Dufourc EJ. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study. Biophys. J. 1995;69:1897–1908. doi: 10.1016/S0006-3495(95)80060-3. PubMed DOI PMC
Goss R, et al. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry. 2005;44:4028–4036. doi: 10.1021/bi047464k. PubMed DOI
Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A. V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants3 (2017). PubMed
Armbruster U, et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell. 2013;25:2661–2678. doi: 10.1105/tpc.113.113118. PubMed DOI PMC
Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta - Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Vígh L, Joó F, Droppa M, Horváth LI, Horváth G. Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur. J. Biochem. 1985;147:477–481. doi: 10.1111/j.0014-2956.1985.00477.x. PubMed DOI
Joó F, et al. Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst palladium di (sodium alizarinmonosulfonate) and details of homogeneous hydrogenation of lipids in isolated biomembranes and living cells. Anal. Biochem. 1991;194:34–40. doi: 10.1016/0003-2697(91)90147-L. PubMed DOI
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Wada H, Murata N. Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol. 1989;30:971–978. doi: 10.1093/oxfordjournals.pcp.a077826. DOI
Akhtar P, et al. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes. Biochim. Biophys. Acta - Bioenerg. 2016;1857:462–472. doi: 10.1016/j.bbabio.2016.01.016. PubMed DOI
Role of isotropic lipid phase in the fusion of photosystem II membranes
Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane