Lipid polymorphism in chloroplast thylakoid membranes - as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy

. 2017 Oct 17 ; 7 (1) : 13343. [epub] 20171017

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29042649
Odkazy

PubMed 29042649
PubMed Central PMC5645462
DOI 10.1038/s41598-017-13574-y
PII: 10.1038/s41598-017-13574-y
Knihovny.cz E-zdroje

Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.

Zobrazit více v PubMed

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Cambridge Philosophic. 1966;41:445–502. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI

Williams, W. P. The physical properties of thylakoid membrane lipids and their relation to photosynthesis in Advances in Photosynthesis. Lipids in Photosynthesis (eds. Siegenthaler, P. A. & Murata, N.) 103–118 (Kluwer Academic Publishers, 1998).

Douce, R. & Joyard, J. Biosynthesis of thylakoid membrane lipids in Oxygenic Photosynthesis: The Light Reactions (eds. Ort, D. R. & Yocum, C. F.) 69–101 (Kluwer Academic Publishers, 1996).

Epand RM. Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta-Rev. Biomembr. 1998;1376:353–368. doi: 10.1016/S0304-4157(98)00015-X. PubMed DOI

Van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta - Biomembr. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI

Guskov A, et al. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 2009;16:334–342. doi: 10.1038/nsmb.1559. PubMed DOI

Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI

Qin XC, Suga M, Kuang TY, Shen JR. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015;348:989–995. doi: 10.1126/science.aab0214. PubMed DOI

Wei X, et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI

Páli T, Garab G, Horváth LI, Kóta Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell. Mol. Life Sci. 2003;60:1591–1606. doi: 10.1007/s00018-003-3173-x. PubMed DOI PMC

Sackman, E. Biological membranes architecture and function in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackmann, E.) 1–65 (Elsevier, 1995).

Dimitrov, D. S. Electroporation and electrofusion of membranes in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackman, E.) 851–903 (Elsevier, 1995).

Seddon, J. M. & Templer, R. H. Polymorphism of lipid–water system in Structure and Dynamics of Membranes (eds. Lipowsky, R. & Sackman, E.) 97–161 (Elsevier, 1995).

Jouhet, J. Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci. 4 (2013). PubMed PMC

Chernomordik L. Non-bilayer lipids and biological fusion intermediates. Chem. Phys. Lipids. 1996;81:203–213. doi: 10.1016/0009-3084(96)02583-2. PubMed DOI

Zick, M., Stroupe, C., Orr, A., Douville, D. & Wickner, W. T. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife3 (2014). PubMed PMC

Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. Biochim. Biophys. Acta - Bioenerg. 2017;1859:537–549. doi: 10.1016/j.bbamem.2016.09.025. PubMed DOI

Simidjiev I, et al. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC

Demé B, Cataye C, Block MA, Maréchal E, Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 2014;28:3373–3383. doi: 10.1096/fj.13-247395. PubMed DOI

Kowalewska L, Mazur R, Suski S, Garstka M, Mostowska A. Three-dimensional visualization of the internal plastid membrane network during runner bean chloroplast biogenesis. Dynamic model of the tubular-lamellar transformation. Plant Cell. 2016;28:875–891. PubMed PMC

Lee AG. Membrane lipids: it’s only a phase. Curr. Biol. 2000;10:R377–R380. doi: 10.1016/S0960-9822(00)00477-2. PubMed DOI

Janik E, et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell. 2013;25:2155–2170. doi: 10.1105/tpc.113.113076. PubMed DOI PMC

van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta - Biomembr. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI

de Kruijff BB. Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI

Brown MF. Curvature forces in membrane lipid-protein interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC

Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. PubMed DOI

Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta - Biomembr. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI

Garab G, Lohner K, Laggner P, Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI

Barros T, Kühlbrandt W. Crystallisation, structure and function of plant light-harvesting Complex II. Biochim. Biophys. Acta - Bioenerg. 2009;1787:753–772. doi: 10.1016/j.bbabio.2009.03.012. PubMed DOI

Gounaris K, Barber J. Monogalactosyldiacylglycerol - the most abundant polar lipid in nature. Trends Biochem.Sci. 1983;8:378–381. doi: 10.1016/0968-0004(83)90366-3. DOI

Simidjiev I, Barzda V, Mustárdy L, Garab G. Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry. 1998;37:4169–4173. doi: 10.1021/bi972726m. PubMed DOI

Horváth I, et al. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog. Lipid Res. 2012;51:208–220. doi: 10.1016/j.plipres.2012.02.002. PubMed DOI

Kirchhoff H, et al. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry. 2007;46:11169–11176. doi: 10.1021/bi700748y. PubMed DOI

Semenova GA. The relationship between the transformation of thylakoid acyl lipids and the formation of tubular lipid aggregates visible on fracture faces. J. Plant Physiol. 1999;155:669–677. doi: 10.1016/S0176-1617(99)80081-9. DOI

Krumova SB, et al. Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim. Biophys. Acta - Biomembr. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI

Krumova SB, et al. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim. Biophys. Acta - Biomembr. 2008;1778:2823–2833. doi: 10.1016/j.bbamem.2008.09.007. PubMed DOI

Langner M, Hui SW. Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim. Biophys. Acta - Biomembr. 1999;1415:323–330. doi: 10.1016/S0005-2736(98)00185-0. PubMed DOI

Mandal D, Pal SK, Sukul D, Bhattacharyya K. Photophysical processes of merocyanine 540 in solutions and in organized media. J. Phys. Chem. A. 1999;103:8156–8159. doi: 10.1021/jp991506a. DOI

Bernik D, Tymczyszyn E, Daraio ME, Negri RM. Fluorescent dimers of merocyanine 540 (MC540) in the gel phase of phosphatidylcholine liposomes. Photochem. Photobiol. 1999;70:40–48. doi: 10.1111/j.1751-1097.1999.tb01947.x. DOI

Harańczyk H, Strzałka K, Dietrich W, Blicharski JS. 31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J. Biol. Phys. 1995;21:125–139. doi: 10.1007/BF00705595. DOI

Garab G, van Amerongen H. Linear dichroism and circular dichroism in photosynthesis research. Photosynth. Res. 2009;101:135–146. doi: 10.1007/s11120-009-9424-4. PubMed DOI PMC

Nagy G, et al. Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E. 2013;36:69. doi: 10.1140/epje/i2013-13069-0. PubMed DOI

Chylla RA, Garab G, Whitmarsh J. Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes. Biochim. Biophys. Acta - Bioenerg. 1987;894:562–571. doi: 10.1016/0005-2728(87)90136-8. DOI

Ünnep R, et al. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta - Bioenerg. 2014;1837:1572–1580. doi: 10.1016/j.bbabio.2014.01.017. PubMed DOI

Adam Z, Charuvi D, Tsabari O, Knopf RR, Reich Z. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol. Biol. 2011;76:221–234. doi: 10.1007/s11103-010-9693-5. PubMed DOI

Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell. 2005;17:2580–2586. doi: 10.1105/tpc.105.035030. PubMed DOI PMC

Mustárdy L, Buttle K, Steinbach G, Garab G. The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell. 2008;20:2552–2557. doi: 10.1105/tpc.108.059147. PubMed DOI PMC

Thomas PG, et al. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta - Bioenerg. 1986;849:131–140. doi: 10.1016/0005-2728(86)90104-0. DOI

Williams WP, Brain APR, Dominy PJ. Induction of nonbilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal-stability of Photosystem II. Biochim. Biophys. Acta - Bioenerg. 1992;1099:137–144. doi: 10.1016/0005-2728(92)90210-S. DOI

Garab, G., Ughy, B. & Goss, R. Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes in Lipids in Plant and Algae Development (eds. Nakamura, Y. & Li-Beisson, Y.) 127-157 (Springer, 2016). PubMed

Grzyb J, Latowski D, Strzalka K. Lipocalins - a family portrait. J. Plant Physiol. 2006;163:895–915. doi: 10.1016/j.jplph.2005.12.007. PubMed DOI

Boca S, et al. Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. Plant. Cell. Environ. 2014;37:368–381. doi: 10.1111/pce.12159. PubMed DOI

Hieber AD, Bugos RC, Yamamoto HY. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim. Biophys. Acta - Protein Struct. Molec. Enzym. 2000;1482:84–91. doi: 10.1016/S0167-4838(00)00141-2. PubMed DOI

Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta - Bioenerg. 2009;1787:3–14. doi: 10.1016/j.bbabio.2008.09.013. PubMed DOI

Levesque-Tremblay G, Havaux M, Ouellet F. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 2009;60:691–702. doi: 10.1111/j.1365-313X.2009.03991.x. PubMed DOI

Malnoë A, Schultink A, Shahrasbi S, Niyogi K. The chloroplastic lipocalin is involved in a sustained photoprotective mechanism regulated by the Suppressor of Quenching 1 protein in Arabidopsis thaliana. Abstract book: The 17th International Congress on Photosynthesis Research, Photosynthesis in a Changing World. 2016;10:93–94.

Abo-Ogiala A, et al. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J. Plant Physiol. 2014;171:250–259. doi: 10.1016/j.jplph.2013.08.003. PubMed DOI

Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta - Bioenerg. 2012;1817:182–193. doi: 10.1016/j.bbabio.2011.04.012. PubMed DOI

Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1996;47:655–684. doi: 10.1146/annurev.arplant.47.1.655. PubMed DOI

Ruban AV, Johnson MP, Duffy CDP. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta - Bioenerg. 2012;1817:167–181. doi: 10.1016/j.bbabio.2011.04.007. PubMed DOI

Ruban AV. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016;170:1903–1916. doi: 10.1104/pp.15.01935. PubMed DOI PMC

Hind G, Nakatani HY, Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc. Natl. Acad. Sci. USA. 1974;71:1484–1488. doi: 10.1073/pnas.71.4.1484. PubMed DOI PMC

Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 2013;16:307–314. doi: 10.1016/j.pbi.2013.03.011. PubMed DOI

Ruban, A. V. & Johnson, M. P. Visualizing the dynamic structure of the plant photosynthetic membrane. Nat. Plants1 (2015). PubMed

Garab G, Leegood RC, Walker DA, Sutherland JC, Hind G. Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular-dichroism. Light-induced reversible structural changes associated with energy dissipation. Biochemistry. 1988;27:2430–2434.

Jajoo A, Szabó M, Zsiros O, Garab G. Low pH induced structural reorganization in thylakoid membranes. Biochim. Biophys. Acta - Bioenerg. 2012;1817:1388–1391. doi: 10.1016/j.bbabio.2012.01.002. PubMed DOI

Jajoo A, et al. Low pH-induced regulation of excitation energy between the two photosystems. FEBS Lett. 2014;588:970–974. doi: 10.1016/j.febslet.2014.01.056. PubMed DOI

Stoichev S, et al. Low pH modulates the macroorganization and thermal stability of PSII supercomplexes in grana membranes. Biophys. J. 2015;108:844–853. doi: 10.1016/j.bpj.2014.12.042. PubMed DOI PMC

Ünnep R, et al. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes - As revealed by small-angle neutron scattering. Biochim. Biophys. Acta - Bioenerg. 2017;1858:360–365. doi: 10.1016/j.bbabio.2017.02.010. PubMed DOI

Nagy G, et al. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 2011;436:225–230. doi: 10.1042/BJ20110180. PubMed DOI

Afonso D, et al. Triggering bilayer to inverted-hexagonal nanostructure formation by thiol-ene click chemistry on cationic lipids: consequences on gene transfection. Soft Matter. 2016;12:4516–4520. doi: 10.1039/C6SM00609D. PubMed DOI

Pott T, Maillet JC, Dufourc EJ. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study. Biophys. J. 1995;69:1897–1908. doi: 10.1016/S0006-3495(95)80060-3. PubMed DOI PMC

Goss R, et al. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry. 2005;44:4028–4036. doi: 10.1021/bi047464k. PubMed DOI

Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A. V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants3 (2017). PubMed

Armbruster U, et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell. 2013;25:2661–2678. doi: 10.1105/tpc.113.113118. PubMed DOI PMC

Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta - Bioenerg. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI

Vígh L, Joó F, Droppa M, Horváth LI, Horváth G. Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur. J. Biochem. 1985;147:477–481. doi: 10.1111/j.0014-2956.1985.00477.x. PubMed DOI

Joó F, et al. Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst palladium di (sodium alizarinmonosulfonate) and details of homogeneous hydrogenation of lipids in isolated biomembranes and living cells. Anal. Biochem. 1991;194:34–40. doi: 10.1016/0003-2697(91)90147-L. PubMed DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI

Wada H, Murata N. Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol. 1989;30:971–978. doi: 10.1093/oxfordjournals.pcp.a077826. DOI

Akhtar P, et al. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes. Biochim. Biophys. Acta - Bioenerg. 2016;1857:462–472. doi: 10.1016/j.bbabio.2016.01.016. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Role of isotropic lipid phase in the fusion of photosystem II membranes

. 2024 Aug ; 161 (1-2) : 127-140. [epub] 20240425

Editorial

. 2023 ; 61 (4) : 398-404. [epub] 20231219

Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy

. 2023 ; 61 (4) : 483-491. [epub] 20231218

Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes-Selective Susceptibilities to Different Lipases and Proteases

. 2022 Aug 28 ; 11 (17) : . [epub] 20220828

Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. I. 31P-NMR Spectroscopy

. 2021 Sep 08 ; 10 (9) : . [epub] 20210908

Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions

. 2021 Sep 09 ; 10 (9) : . [epub] 20210909

Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease

. 2021 Jul 08 ; 10 (7) : . [epub] 20210708

Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane

. 2020 Dec 29 ; 11 (1) : . [epub] 20201229

Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching

. 2020 Sep ; 10 (9) : 200144. [epub] 20200916

Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase

. 2020 Jul 20 ; 10 (1) : 11959. [epub] 20200720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...