Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Validation Study
PubMed
29170394
PubMed Central
PMC5700985
DOI
10.1038/s41467-017-01857-x
PII: 10.1038/s41467-017-01857-x
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- CD4 Antigens genetics metabolism MeSH
- Cell Membrane metabolism MeSH
- Fluorescent Dyes MeSH
- Microscopy, Fluorescence methods statistics & numerical data MeSH
- Jurkat Cells MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Mutant Proteins genetics metabolism MeSH
- Optical Imaging methods statistics & numerical data MeSH
- Cluster Analysis MeSH
- T-Lymphocytes immunology metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH
- Names of Substances
- CD4 Antigens MeSH
- Fluorescent Dyes MeSH
- Membrane Proteins MeSH
- Mutant Proteins MeSH
Quantitative approaches for characterizing molecular organization of cell membrane molecules under physiological and pathological conditions profit from recently developed super-resolution imaging techniques. Current tools employ statistical algorithms to determine clusters of molecules based on single-molecule localization microscopy (SMLM) data. These approaches are limited by the ability of SMLM techniques to identify and localize molecules in densely populated areas and experimental conditions of sample preparation and image acquisition. We have developed a robust, model-free, quantitative clustering analysis to determine the distribution of membrane molecules that excels in densely labeled areas and is tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The method is based on a TIRF microscope followed by a super-resolution optical fluctuation imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein mutants in the plasma membrane of T cells.
Bordeaux Imaging Center UMS 3420 CNRS Université de Bordeaux US4 INSERM 33077 Bordeaux France
Department of Radioelectronics FEE Czech Technical University Prague 166 27 Prague Czech Republic
Imaging Methods Core Facility BIOCEV 252 50 Vestec u Prahy Czech Republic
See more in PubMed
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. Annu. Rev. Plant Biol. 2013;64:501–529. doi: 10.1146/annurev-arplant-050312-120103. PubMed DOI
Saka SK, et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 2014;5:4509. PubMed PMC
Ames P, Studdert Ca, Reiser RH, Parkinson JS. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci. USA. 2002;99:7060–7065. doi: 10.1073/pnas.092071899. PubMed DOI PMC
Cebecauer M, Spitaler M, Sergé A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 2010;123:309–320. doi: 10.1242/jcs.061739. PubMed DOI
Prior IA, Muncke C, Parton RG, Hancock JF. Direct visualization of ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 2003;160:165–170. doi: 10.1083/jcb.200209091. PubMed DOI PMC
Owen DM, Gaus K, Magee AI, Cebecauer M. Dynamic organization of lymphocyte plasma membrane: Lessons from advanced imaging methods. Immunology. 2010;131:1–8. doi: 10.1111/j.1365-2567.2010.03388.x. PubMed DOI PMC
Burgert A, Letschert S, Doose S, Sauer M. Artifacts in single-molecule localization microscopy. Histochem. Cell Biol. 2015;144:123–131. doi: 10.1007/s00418-015-1340-4. PubMed DOI
Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods. 2011;8:527–528. doi: 10.1038/nmeth.1627. PubMed DOI
Vandenberg W, Leutenegger M, Lasser T, Hofkens J, Dedecker P. Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res. 2015;360:151–178. doi: 10.1007/s00441-014-2109-0. PubMed DOI
Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 2009;78:993–1016. doi: 10.1146/annurev.biochem.77.061906.092014. PubMed DOI PMC
Baumgart F, et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods. 2016;13:661–664. doi: 10.1038/nmeth.3897. PubMed DOI PMC
Rubin-Delanchy P, et al. Bayesian cluster identification in single-molecule localization microscopy data. Nat. Methods. 2015;12:1072–1076. doi: 10.1038/nmeth.3612. PubMed DOI
Sengupta P, et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods. 2011;8:969–975. doi: 10.1038/nmeth.1704. PubMed DOI PMC
Levet F, et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods. 2015;12:1065–1071. doi: 10.1038/nmeth.3579. PubMed DOI
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI
Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006;91:4258–4272. doi: 10.1529/biophysj.106.091116. PubMed DOI PMC
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–795. doi: 10.1038/nmeth929. PubMed DOI PMC
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. doi: 10.1126/science.1153529. PubMed DOI PMC
Heilemann M, et al. Angew. Chemie Int. Ed. 2008. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes; pp. 6172–6176. PubMed
Van de Linde S, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 2011;6:991–1009. doi: 10.1038/nprot.2011.336. PubMed DOI
Owen DM, et al. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics. 2010;3:446–454. doi: 10.1002/jbio.200900089. PubMed DOI
Ester M, Kriegel HP, Sander J, Xu XA. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD. 1996;96:226–231.
Ankerst M, Breunig M, Kriegel H, Sander J. OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Int. Conf. Manag. Data. 1999;28:49–60. doi: 10.1145/304181.304187. DOI
Mazouchi A, Milstein JN. Fast Optimized Cluster Algorithm for Localizations (FOCAL): A spatial cluster analysis for super-resolved microscopy. Bioinformatics. 2015;32:747–754. doi: 10.1093/bioinformatics/btv630. PubMed DOI
Andronov L, Lutz Y, Vonesch JL, Klaholz BP. SharpViSu: Integrated analysis and segmentation of super-resolution microscopy data. Bioinformatics. 2016;32:2239–2241. doi: 10.1093/bioinformatics/btw123. PubMed DOI PMC
Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) Proc. Natl Acad. Sci. USA. 2009;106:22287–22292. doi: 10.1073/pnas.0907866106. PubMed DOI PMC
Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI) Opt. Express. 2010;18:18875–18885. doi: 10.1364/OE.18.018875. PubMed DOI PMC
Geissbuehler S, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 2014;5:5830. doi: 10.1038/ncomms6830. PubMed DOI PMC
Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM. Biomed. Opt. Express. 2011;2:408–420. doi: 10.1364/BOE.2.000408. PubMed DOI PMC
Deschout H, et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat. Commun. 2016;7:13693. doi: 10.1038/ncomms13693. PubMed DOI PMC
Geissbuehler S, et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI) Opt. Nanoscopy. 2012;1:4. doi: 10.1186/2192-2853-1-4. DOI
Petersen NO, Hoddelius PL, Wiseman PW, Seger O, Magnusson KE. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 1993;65:1135–1146. doi: 10.1016/S0006-3495(93)81173-1. PubMed DOI PMC
Hebert B, Costantino S, Wiseman PW. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 2005;88:3601–3614. doi: 10.1529/biophysj.104.054874. PubMed DOI PMC
Brown CM, et al. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc. 2008;229:78–91. doi: 10.1111/j.1365-2818.2007.01871.x. PubMed DOI PMC
Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive imageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. PubMed DOI PMC
Roh KH, Lillemeier BF, Wang F, Davis MM. The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proc. Natl Acad. Sci. USA. 2015;112:E1604–E1613. doi: 10.1073/pnas.1503532112. PubMed DOI PMC
Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immunol. 2012;14:82–89. doi: 10.1038/ni.2488. PubMed DOI
Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE. 2011;6:e22678. doi: 10.1371/journal.pone.0022678. PubMed DOI PMC
Lee SH, Shin JY, Lee A, Bustamante C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) Proc. Natl Acad. Sci. USA. 2012;109:17436–17441. doi: 10.1073/pnas.1215175109. PubMed DOI PMC
Spahn C, Herrmannsdörfer F, Kuner T, Heilemann M. Temporal accumulation analysis provides simplified artifact-free analysis of membrane-protein nanoclusters. Nat. Methods. 2016;13:963–964. doi: 10.1038/nmeth.4065. PubMed DOI
McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL. A bright and photostable photoconvertible fluorescent protein. Nat. Methods. 2009;6:131–133. doi: 10.1038/nmeth.1296. PubMed DOI PMC
Popik W, Alce TM. CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4. J. Biol. Chem. 2004;279:704–712. doi: 10.1074/jbc.M306380200. PubMed DOI
Approach to map nanotopography of cell surface receptors