A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30254085
PubMed Central
PMC6215428
DOI
10.1242/dmm.035949
PII: dmm.035949
Knihovny.cz E-resources
- Keywords
- DNA damage, DNA repair, HD large animal model, Huntington's disease, Mitochondrial function,
- MeSH
- 8-Hydroxy-2'-Deoxyguanosine MeSH
- Behavior, Animal * MeSH
- Nerve Degeneration pathology MeSH
- Deoxyguanosine analogs & derivatives metabolism MeSH
- Energy Metabolism MeSH
- Animals, Genetically Modified MeSH
- Genome MeSH
- Huntington Disease metabolism pathology MeSH
- Humans MeSH
- Swine, Miniature MeSH
- Mitochondria metabolism MeSH
- Disease Models, Animal MeSH
- DNA Repair MeSH
- Organ Specificity MeSH
- DNA Damage MeSH
- Swine MeSH
- Huntingtin Protein metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 8-Hydroxy-2'-Deoxyguanosine MeSH
- Deoxyguanosine MeSH
- Huntingtin Protein MeSH
Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions.This article has an associated First Person interview with the first author of the paper.
Department of Cell Biology Faculty of Science Charles University Prague Prague 12843 Czech Republic
Department of Microbiology Oslo University Hospital 0372 Oslo Norway
See more in PubMed
Askeland G., Dosoudilova Z., Rodinova M., Klempir J., Liskova I., Kuśnierczyk A., Bjørås M., Nesse G., Klungland A., Hansikova H. et al. (2018). Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci. Rep. 8, 9817 10.1038/s41598-018-27985-y PubMed DOI PMC
Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M. et al. (2013). A transgenic minipig model of Huntington's Disease. J. Huntingtons Dis. 2, 47-68. PubMed
Benn C. L., Sun T., Sadri-Vakili G., McFarland K. N., DiRocco D. P., Yohrling G. J., Clark T. W., Bouzou B. and Cha J.-H. J. (2008). Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. J. Neurosci. 28, 10720-10733. 10.1523/JNEUROSCI.2126-08.2008 PubMed DOI PMC
Björkqvist M., Wild E. J., Thiele J., Silvestroni A., Andre R., Lahiri N., Raibon E., Lee R. V., Benn C. L., Soulet D. et al. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 1869-1877. 10.1084/jem.20080178 PubMed DOI PMC
Bogdanov M. B., Andreassen O. A., Dedeoglu A., Ferrante R. J. and Beal M. F. (2001). Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J. Neurochem. 79, 1246-1249. 10.1046/j.1471-4159.2001.00689.x PubMed DOI
Borowsky B., Warner J., Leavitt B. R., Tabrizi S. J., Roos R. A. C., Durr A., Becker C., Sampaio C., Tobin A. J. and Schulman H. (2013). 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80, 1934-1941. 10.1212/WNL.0b013e318293e1a1 PubMed DOI PMC
Browne S. E., Bowling A. C., MacGarvey U., Baik M. J., Berger S. C., Muquit M. M. K., Bird E. D. and Beal M. F. (1997). Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646-653. 10.1002/ana.410410514 PubMed DOI
Budworth H., Harris F. R., Williams P., Lee D. Y., Holt A., Pahnke J., Szczesny B., Acevedo-Torres K., Ayala-Peña S. and McMurray C. T. (2015). Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington's disease. PLoS Genet. 11, e1005267 10.1371/journal.pgen.1005267 PubMed DOI PMC
Cahova M., Chrastina P., Hansikova H., Drahota Z., Trnovska J., Skop V., Spacilova J., Malinska H., Oliyarnyk O., Papackova Z. et al. (2015). Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280-291. 10.1139/apnm-2014-0163 PubMed DOI
Choudhry S., Mukerji M., Srivastava A. K., Jain S. and Brahmachari S. K. (2001). CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum. Mol. Genet. 10, 2437-2446. 10.1093/hmg/10.21.2437 PubMed DOI
Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L. and Bates G. P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537-548. 10.1016/S0092-8674(00)80513-9 PubMed DOI
Dedeoglu A., Kubilus J. K., Yang L., Ferrante K. L., Hersch S. M., Beal M. F. and Ferrante R. J. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. J. Neurochem. 85, 1359-1367. 10.1046/j.1471-4159.2003.01706.x PubMed DOI PMC
DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P. and Aronin N. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-1993. 10.1126/science.277.5334.1990 PubMed DOI
Ferrante R. J., Andreassen O. A., Jenkins B. G., Dedeoglu A., Kuemmerle S., Kubilus J. K., Kaddurah-Daouk R., Hersch S. M. and Beal M. F. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci. 20, 4389-4397. 10.1523/JNEUROSCI.20-12-04389.2000 PubMed DOI PMC
Ferrante R. J., Andreassen O. A., Dedeoglu A., Ferrante K. L., Jenkins B. G., Hersch S. M. and Beal M. F. (2002). Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J. Neurosci. 22, 1592-1599. 10.1523/JNEUROSCI.22-05-01592.2002 PubMed DOI PMC
Ferrante R. J., Kubilus J. K., Lee J., Ryu H., Beesen A., Zucker B., Smith K., Kowall N. W., Ratan R. R., Luthi-Carter R. et al. (2003). Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418-9427. 10.1523/JNEUROSCI.23-28-09418.2003 PubMed DOI PMC
Gray M., Shirasaki D. I., Cepeda C., Andre V. M., Wilburn B., Lu X.-H., Tao J., Yamazaki I., Li S.-H., Sun Y. E. et al. (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J. Neurosci. 28, 6182-6195. 10.1523/JNEUROSCI.0857-08.2008 PubMed DOI PMC
Gu M., Gash M. T., Mann V. M., Javoy-Agid F., Cooper J. M. and Schapira A. H. V. (1996). Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 385-389. 10.1002/ana.410390317 PubMed DOI
Gustafson E. L., Ehrlich M. E., Trivedi P. and Greengard P. (1992). Developmental regulation of phosphoprotein gene expression in the caudate-putamen of rat: an in situ hybridization study. Neuroscience 51, 65-75. 10.1016/0306-4522(92)90471-D PubMed DOI
Hands S., Sajjad M. U., Newton M. J. and Wyttenbach A. (2011). In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem. 286, 44512-44520. 10.1074/jbc.M111.307587 PubMed DOI PMC
Hersch S. M., Schifitto G., Oakes D., Bredlau A.-L., Meyers C. M., Nahin R., Rosas H. D. and Huntington Study Group CREST-E Investigators and Coordinators (2017). The CREST-E study of creatine for Huntington disease: a randomized controlled trial. Neurology 89, 594-601. 10.1212/WNL.0000000000004209 PubMed DOI PMC
Huntington Study Group. (2001). A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology 57, 397-404. 10.1212/WNL.57.3.397 PubMed DOI
Jonson I., Ougland R., Klungland A. and Larsen E. (2013). Oxidative stress causes DNA triplet expansion in Huntington's disease mouse embryonic stem cells. Stem Cell Res. 11, 1264-1271. 10.1016/j.scr.2013.08.010 PubMed DOI
Jozefovicova M., Herynek V., Jiru F., Dezortova M., Juhasova J., Juhas S., Motlik J. and Hajek M. (2016). Minipig model of Huntington's disease: (1)H magnetic resonance spectroscopy of the brain. Physiol. Res. 65, 155-163. PubMed
Klungland A., Rosewell I., Hollenbach S., Larsen E., Daly G., Epe B., Seeberg E., Lindahl T. and Barnes D. E. (1999). Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA 96, 13300-13305. 10.1073/pnas.96.23.13300 PubMed DOI PMC
Kovtun I. V., Liu Y., Bjoras M., Klungland A., Wilson S. H. and McMurray C. T. (2007). OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447-452. 10.1038/nature05778 PubMed DOI PMC
Krizova J., Stufkova H., Rodinova M., Macakova M., Bohuslavova B., Vidinska D., Klima J., Ellederova Z., Pavlok A., Howland D. S. et al. (2017). Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of Presymptomatic Minipigs. Neurodegener. Dis. 17, 213-226. 10.1159/000475467 PubMed DOI
Lai Y., Budworth H., Beaver J. M., Chan N. L. S., Zhang Z., McMurray C. T. and Liu Y. (2016). Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair. Nat. Commun. 7, 12465 10.1038/ncomms12465 PubMed DOI PMC
Lee J., Hwang Y. J., Kim K. Y., Kowall N. W. and Ryu H. (2013). Epigenetic mechanisms of neurodegeneration in Huntington's disease. Neurotherapeutics 10, 664-676. 10.1007/s13311-013-0206-5 PubMed DOI PMC
Logan A., Shabalina I. G., Prime T. A., Rogatti S., Kalinovich A. V., Hartley R. C., Budd R. C., Cannon B. and Murphy M. P. (2014). In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 13, 765-768. 10.1111/acel.12212 PubMed DOI PMC
Long J. D., Matson W. R., Juhl A. R., Leavitt B. R., Paulsen J. S., PREDICT-HD Investigators and Coordinators of the Huntington Study Group (2012). 8OHdG as a marker for Huntington disease progression. Neurobiol. Dis. 46, 625-634. 10.1016/j.nbd.2012.02.012 PubMed DOI PMC
Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275. PubMed
Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M. et al. (2016). Mutated Huntingtin causes testicular pathology in transgenic minipig boars. Neurodegener. Dis. 16, 245-259. 10.1159/000443665 PubMed DOI
McGarry A., McDermott M., Kieburtz K., de Blieck E. A., Beal F., Marder K., Ross C., Shoulson I., Gilbert P., Mallonee W. M. et al. (2017). A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88, 152-159. 10.1212/WNL.0000000000003478 PubMed DOI PMC
Mende-Mueller L. M., Toneff T., Hwang S.-R., Chesselet M.-F. and Hook V. Y. H. (2001). Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. J. Neurosci. 21, 1830-1837. 10.1523/JNEUROSCI.21-06-01830.2001 PubMed DOI PMC
Miller J. P., Holcomb J., Al-Ramahi I., de Haro M., Gafni J., Zhang N., Kim E., Sanhueza M., Torcassi C., Kwak S. et al. (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 67, 199-212. 10.1016/j.neuron.2010.06.021 PubMed DOI PMC
Mollersen L., Rowe A. D., Illuzzi J. L., Hildrestrand G. A., Gerhold K. J., Tveteras L., Bjolgerud A., Wilson D. M. III, Bjoras M. and Klungland A. (2012). Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum. Mol. Genet. 21, 4939-4947. 10.1093/hmg/dds337 PubMed DOI PMC
Ng C. W., Yildirim F., Yap Y. S., Dalin S., Matthews B. J., Velez P. J., Labadorf A., Housman D. E. and Fraenkel E. (2013). Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc. Natl. Acad. Sci. USA 110, 2354-2359. 10.1073/pnas.1221292110 PubMed DOI PMC
Pearson C. E., Eichler E. E., Lorenzetti D., Kramer S. F., Zoghbi H. Y., Nelson D. L. and Sinden R. R. (1998). Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37, 2701-2708. 10.1021/bi972546c PubMed DOI
Pinto R. M., Dragileva E., Kirby A., Lloret A., Lopez E., St Claire J., Panigrahi G. B., Hou C., Holloway K., Gillis T. et al. (2013). Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet. 9, e1003930 10.1371/journal.pgen.1003930 PubMed DOI PMC
Polidori M. C., Mecocci P., Browne S. E., Senin U. and Beal M. F. (1999). Oxidative damage to mitochondrial DNA in Huntington's disease parietal cortex. Neurosci. Lett. 272, 53-56. 10.1016/S0304-3940(99)00578-9 PubMed DOI
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M. and Munnich A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 35-51. 10.1016/0009-8981(94)90055-8 PubMed DOI
Sathasivam K., Neueder A., Gipson T. A., Landles C., Benjamin A. C., Bondulich M. K., Smith D. L., Faull R. L. M., Roos R. A. C., Howland D. et al. (2013). Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. USA 110, 2366-2370. 10.1073/pnas.1221891110 PubMed DOI PMC
Schramke S., Schuldenzucker V., Schubert R., Frank F., Wirsig M., Ott S., Motlik J., Fels M., Kemper N., Hölzner E. et al. (2016). Behavioral phenotyping of minipigs transgenic for the Huntington gene. J. Neurosci. Methods 265, 34-45. 10.1016/j.jneumeth.2015.11.013 PubMed DOI
Schuldenzucker V., Schubert R., Muratori L. M., Freisfeld F., Rieke L., Matheis T., Schramke S., Motlik J., Kemper N., Radespiel U. et al. (2017). Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PLoS ONE 12, e0185970 10.1371/journal.pone.0185970 PubMed DOI PMC
Siddiqui A., Rivera-Sánchez S., Castro M. R., Acevedo-Torres K., Rane A., Torres-Ramos C. A., Nicholls D. G., Andersen J. K. and Ayala-Torres S. (2012). Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radic. Biol. Med. 53, 1478-1488. 10.1016/j.freeradbiomed.2012.06.008 PubMed DOI PMC
Srere P. A. (1969). Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol. 13, 3-11.
Tabrizi S. J., Workman J., Hart P. E., Mangiarini L., Mahal A., Bates G., Cooper J. M. and Schapira A. H. V. (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47, 80-86. 10.1002/1531-8249(200001)47:1<80::AID-ANA13>3.0.CO;2-K PubMed DOI
Träger U., Andre R., Magnusson-Lind A., Miller J. R. C., Connolly C., Weiss A., Grueninger S., Silajdžić E., Smith D. L., Leavitt B. R. et al. (2015). Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiol. Dis. 73, 388-398. 10.1016/j.nbd.2014.10.012 PubMed DOI PMC
Trifunovic A., Hansson A., Wredenberg A., Rovio A. T., Dufour E., Khvorostov I., Spelbrink J. N., Wibom R., Jacobs H. T. and Larsson N.-G. (2005). Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. USA 102, 17993-17998. 10.1073/pnas.0508886102 PubMed DOI PMC
Underwood B. R., Broadhurst D., Dunn W. B., Ellis D. I., Michell A. W., Vacher C., Mosedale D. E., Kell D. B., Barker R. A., Grainger D. J. et al. (2006). Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129, 877-886. 10.1093/brain/awl027 PubMed DOI
Villar-Menéndez I., Blanch M., Tyebji S., Pereira-Veiga T., Albasanz J. L., Martín M., Ferrer I., Pérez-Navarro E. and Barrachina M. (2013). Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington's disease. Neuromolecular Med. 15, 295-309. 10.1007/s12017-013-8219-0 PubMed DOI
Wang W., Esbensen Y., Scheffler K. and Eide L. (2015). Analysis of mitochondrial DNA and RNA integrity by a real-time qPCR-based method. Methods Mol. Biol. 1264, 97-106. 10.1007/978-1-4939-2257-4_10 PubMed DOI
Wang G., Liu X., Gaertig M. A., Li S. and Li X.-J. (2016a). Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc. Natl. Acad. Sci. USA 113, 3359-3364. 10.1073/pnas.1524575113 PubMed DOI PMC
Wang W., Scheffler K., Esbensen Y. and Eide L. (2016b). Quantification of DNA damage by real-time qPCR. Methods Mol. Biol. 1351, 27-32. 10.1007/978-1-4939-3040-1_3 PubMed DOI
Weiss A., Träger U., Wild E. J., Grueninger S., Farmer R., Landles C., Scahill R. I., Lahiri N., Haider S., Macdonald D. et al. (2012). Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression. J. Clin. Invest. 122, 3731-3736. 10.1172/JCI64565 PubMed DOI PMC
Yuzefovych L. V., Schuler A. M., Chen J., Alvarez D. F., Eide L., Ledoux S. P., Wilson G. L. and Rachek L. I. (2013). Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of ogg1. Endocrinology 154, 2640-2649. 10.1210/en.2013-1076 PubMed DOI PMC
Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next
Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration