Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20154247/2015
Internal Grant Agency (IGA) of the Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
PubMed
31405197
PubMed Central
PMC6720901
DOI
10.3390/molecules24162912
PII: molecules24162912
Knihovny.cz E-resources
- Keywords
- HSV, HSV replication, anti-enzymatic properties, antiherpetic, lichen metabolites, psoromic acid,
- MeSH
- Antiviral Agents * chemistry pharmacology MeSH
- Benzoxepins * chemistry pharmacology MeSH
- Chlorocebus aethiops MeSH
- DNA-Directed DNA Polymerase * chemistry metabolism MeSH
- Nucleic Acid Synthesis Inhibitors chemistry pharmacology MeSH
- Carboxylic Acids * chemistry pharmacology MeSH
- Humans MeSH
- Herpesvirus 1, Human physiology MeSH
- Herpesvirus 2, Human physiology MeSH
- Lichens chemistry MeSH
- Virus Replication drug effects MeSH
- Molecular Docking Simulation * MeSH
- Vero Cells MeSH
- Viral Proteins * antagonists & inhibitors chemistry metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents * MeSH
- Benzoxepins * MeSH
- DNA-Directed DNA Polymerase * MeSH
- Nucleic Acid Synthesis Inhibitors MeSH
- Carboxylic Acids * MeSH
- psoromic acid MeSH Browser
- Viral Proteins * MeSH
Psoromic acid (PA), a bioactive lichen-derived compound, was investigated for its inhibitory properties against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), along with the inhibitory effect on HSV-1 DNA polymerase, which is a key enzyme that plays an essential role in HSV-1 replication cycle. PA was found to notably inhibit HSV-1 replication (50% inhibitory concentration (IC50): 1.9 μM; selectivity index (SI): 163.2) compared with the standard drug acyclovir (ACV) (IC50: 2.6 μM; SI: 119.2). The combination of PA with ACV has led to potent inhibitory activity against HSV-1 replication (IC50: 1.1 µM; SI: 281.8) compared with that of ACV. Moreover, PA displayed equivalent inhibitory action against HSV-2 replication (50% effective concentration (EC50): 2.7 μM; SI: 114.8) compared with that of ACV (EC50: 2.8 μM; SI: 110.7). The inhibition potency of PA in combination with ACV against HSV-2 replication was also detected (EC50: 1.8 µM; SI: 172.2). Further, PA was observed to effectively inhibit HSV-1 DNA polymerase (as a non-nucleoside inhibitor) with respect to dTTP incorporation in a competitive inhibition mode (half maximal inhibitory concentration (IC50): 0.7 μM; inhibition constant (Ki): 0.3 μM) compared with reference drugs aphidicolin (IC50: 0.8 μM; Ki: 0.4 μM) and ACV triphosphate (ACV-TP) (IC50: 0.9 μM; Ki: 0.5 μM). It is noteworthy that the mechanism by which PA-induced anti-HSV-1 activity was related to its inhibitory action against HSV-1 DNA polymerase. Furthermore, the outcomes of in vitro experiments were authenticated using molecular docking analyses, as the molecular interactions of PA with the active sites of HSV-1 DNA polymerase and HSV-2 protease (an essential enzyme required for HSV-2 replication) were revealed. Since this is a first report on the above-mentioned properties, we can conclude that PA might be a future drug for the treatment of HSV infections as well as a promising lead molecule for further anti-HSV drug design.
See more in PubMed
Hassan S.T., Masarčíková R., Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Kobty M. Herpes Simplex Virus: Beyond the Basics. Neonatal Netw. 2015;34:279–283. doi: 10.1891/0730-0832.34.5.279. PubMed DOI
Sanders J.E., Garcia S.E. Pediatric herpes simplex virus infections: An evidence-based approach to treatment. Pediatr. Emerg. Med. Pract. 2014;11:1–19. PubMed
Miller A.S., Bennett J.S. Challenges in the care of young infants with suspected neonatal herpes simplex virus. Hosp. Pediatr. 2015;5:106–108. doi: 10.1542/hpeds.2014-0095. PubMed DOI
Widener R.W., Whitley R.J. Herpes simplex virus. Handb. Clin. Neurol. 2014;123:251–263. PubMed
Akinyi B., Odhiambo C., Otieno F., Inzaule S., Oswago S., Kerubo E., Ndivo R., Zeh C. Prevalence, incidence and correlates of HSV-2 infection in an HIV incidence adolescent and adult cohort study in western Kenya. PLoS ONE. 2017;12:e0178907. doi: 10.1371/journal.pone.0178907. PubMed DOI PMC
Memish Z.A., Almasri M., Chentoufi A.A., Al-Tawfiq J.A., Al-Shangiti A.M., Al-Kabbani K.M., Otaibi B., Assirri A., Yezli S. Seroprevalence of Herpes Simplex Virus Type 1 and Type 2 and Coinfection with HIV and Syphilis: The First National Seroprevalence Survey in Saudi Arabia. Sex. Trans. Dis. 2015;42:526–532. doi: 10.1097/OLQ.0000000000000336. PubMed DOI
Koyuncu O.O., MacGibeny M.A., Enquist L.W. Latent versus productive infection: The alpha herpesvirus switch. Future Virol. 2018;13:431–443. doi: 10.2217/fvl-2018-0023. PubMed DOI PMC
Knipe D.M., Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Microbiol. 2008;6:211–221. doi: 10.1038/nrmicro1794. PubMed DOI
Zarrouk K., Piret J., Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res. 2017;234:177–192. doi: 10.1016/j.virusres.2017.01.019. PubMed DOI
Sauerbrei A., Bohn-Wippert K., Kaspar M., Krumbholz A., Karrasch M., Zell R. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. J. Antimicrob. Chemother. 2016;71:6–16. doi: 10.1093/jac/dkv285. PubMed DOI
Knopf K.W., Kaufman E.R., Crumpacker C. Physical mapping of drug resistance mutations defines an active center of the herpes simplex virus DNA polymerase enzyme. J. Virol. 1981;39:746–757. PubMed PMC
Coen D.M., Schaffer P.A. Antiherpesvirus drugs: A promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2003;2:278–288. doi: 10.1038/nrd1065. PubMed DOI
Morfin F., Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 2003;26:29–37. doi: 10.1016/S1386-6532(02)00263-9. PubMed DOI
Styczynski J., Reusser P., Einsele H., de la Camara R., Cordonnier C., Ward K.N., Ljungman P., Engelhard D. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: Guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43:757–770. doi: 10.1038/bmt.2008.386. PubMed DOI
Shibata S. Der Stoffwechsel Sekundärer Pflanzenstoffe/The Metabolism of Secondary Plant Products. Springer; Berlin/Heidelberg, Germany: 1958. Especial compounds of lichens; pp. 560–623.
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Gowrishankar S., Rengasamy K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018;7:226. doi: 10.3390/jcm7080226. PubMed DOI PMC
Vartia K.O. The Lichens. Academic Press, Inc.; New York, NY, USA: 1973. Antibiotics in lichens; pp. 547–561.
Sweidan A., Chollet-Krugler M., Sauvager A., Van de Weghe P., Chokr A., Bonnaure-Mallet M., Tomasi S., Bousarghin L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia. 2017;121:164–169. doi: 10.1016/j.fitote.2017.07.011. PubMed DOI
Emsen B., Aslan A., Togar B., Turkez H. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm. Biol. 2016;54:1748–1762. doi: 10.3109/13880209.2015.1126620. PubMed DOI
Da Rosa Guterres Z., Honda N.K., Coelho R.G., Alcantara G.B., Micheletti A.C. Antigenotoxicity of depsidones isolated from Brazilian lichens. Orbital. Electron. J. Chem. 2017;9:50–54. doi: 10.17807/orbital.v9i1.897. DOI
Brandão L.F.G., Alcantara G.B., Matos M.D.F.C., Bogo D., dos Santos Freitas D., Oyama N.M., Honda N.K. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells. Chem. Pharm. Bull. 2013;61:176–183. PubMed
Behera B.C., Mahadik N., Morey M. Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm. Biol. 2012;50:968–979. doi: 10.3109/13880209.2012.654396. PubMed DOI
Deraeve C.L., Guo Z., Bon R.S., Blankenfeldt W., DiLucrezia R., Wolf A., Menninger S., Stigter E.A., Wetzel S., Choidas A. Psoromic acid is a selective and covalent rab-prenylation inhibitor targeting autoinhibited rabggtase. J. Am. Chem. Soc. 2012;134:7384–7391. doi: 10.1021/ja211305j. PubMed DOI
Reusser P. Herpesvirus resistance to antiviral drugs: A review of the mechanisms, clinical importance and therapeutic options. J. Hosp. Infect. 1996;33:235–248. doi: 10.1016/S0195-6701(96)90010-9. PubMed DOI
Piret J., Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011;55:459–472. doi: 10.1128/AAC.00615-10. PubMed DOI PMC
Cao S., Gan Y., Dong X., Lu Z. Herpes simplex virus type 2 and the risk of cervical cancer: A meta-analysis of observational studies. Arch. Gynecol. Obstet. 2014;290:1059–1066. doi: 10.1007/s00404-014-3365-7. PubMed DOI
Kitazato K., Wang Y., Kobayashi N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther. 2007;1:14–22. PubMed
Lawler J.L., Coen D.M. HSV-1 DNA polymerase 3′-5′ exonuclease-deficient mutant D368A exhibits severely reduced viral DNA synthesis and polymerase expression. J. Gen. Virol. 2018;99:1432–1437. doi: 10.1099/jgv.0.001138. PubMed DOI PMC
Zhang J., Wang S., Wang K., Zheng C. Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-α-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1. Med. Microbiol. Immunol. 2013;202:313–325. doi: 10.1007/s00430-013-0295-0. PubMed DOI
Wathen M.W. Non-nucleoside inhibitors of herpesviruses. Rev. Med. Virol. 2002;12:167–178. doi: 10.1002/rmv.354. PubMed DOI
Eizuru Y. Development of new antivirals for herpesviruses. Antivir. Chem. Chemother. 2003;14:299–308. doi: 10.1177/095632020301400602. PubMed DOI
McClain L., Zhi Y., Cheng H., Ghosh A., Piazza P., Yee M.B., Kumar S., Milosevic J., Bloom D.C., Arav-Boger R., et al. Broad-spectrum non-nucleoside inhibitors of human herpesviruses. Antivir. Res. 2015;121:16–23. doi: 10.1016/j.antiviral.2015.06.005. PubMed DOI PMC
Terry B.J., Liu W.C., Cianci C.W., Proszynski E., Fernandes P., Bush K., Meyers E. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J. Antibiot. 1992;45:286–288. doi: 10.7164/antibiotics.45.286. PubMed DOI
Mao J.C., Robishaw E.E., Overby L.R. Inhibition of DNA polymerase from herpes simplex virus-infected wi-38 cells by phosphonoacetic Acid. J. Virol. 1975;15:1281–1283. PubMed PMC
Reardon J.E. Herpes simplex virus type 1 DNA polymerase. Mechanism-based affinity chromatography. J. Biol. Chem. 1990;265:7112–7115. PubMed
Liu S., Knafels J.D., Chang J.S., Waszak G.A., Baldwin E.T., Deibel M.R., Jr., Thomsen D.R., Homa F.L., Wells P.A., Tory M.C., et al. Crystal structure of the herpes simplex virus 1 DNA polymerase. J. Biol. Chem. 2006;281:18193–18200. doi: 10.1074/jbc.M602414200. PubMed DOI
Babe L.M., Craik C.S. Viral proteases: Evolution of diverse structural motifs to optimize function. Cell. 1997;91:427–430. doi: 10.1016/S0092-8674(00)80426-2. PubMed DOI
Mello J.F., Botelho N.C., Souza A.M., Oliveira R., Brito M.A., Abrahim-Vieira Bde A., Sodero A.C., Castro H.C., Cabral L.M., Miceli L.A., et al. Computational Studies of Benzoxazinone Derivatives as Antiviral Agents against Herpes Virus Type 1 Protease. Molecules. 2015;20:10689–10704. doi: 10.3390/molecules200610689. PubMed DOI PMC
Waxman L., Darke P.L. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother. 2000;11:1–22. doi: 10.1177/095632020001100101. PubMed DOI
Hoog S.S., Smith W.W., Qiu X., Janson C.A., Hellmig B., McQueney M.S., O’Donnell K., O’Shannessy D., DiLella A.G., Debouck C., et al. Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry. 1997;36:14023–14029. doi: 10.1021/bi9712697. PubMed DOI
Hassan S.T.S., Berchová-Bímová K., Šudomová M., Malaník M., Šmejkal K., Rengasamy K.R.R. In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice. J. Clin. Med. 2018;7:283. doi: 10.3390/jcm7090283. PubMed DOI PMC
Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Brezáni V., Leláková V., Hassan S.T.S., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC
Knopf K.W. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. Eur. J. Biochem. 1979;98:231–244. doi: 10.1111/j.1432-1033.1979.tb13181.x. PubMed DOI
Schnute M.E., Anderson D.J., Brideau R.J., Ciske F.L., Collier S.A., Cudahy M.M., Eggen M., Genin M.J., Hopkins T.A., Judge T.M., et al. 2-Aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno [2,3-b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases. Bioorg. Med. Chem. Lett. 2007;17:3349–3353. doi: 10.1016/j.bmcl.2007.03.102. PubMed DOI
Nishiyama Y., Maeno K., Yoshida S. Correlation of increased nuclease activity with enhanced virus reactivation. Exp. Cell Res. 1982;138:485–489. doi: 10.1016/0014-4827(82)90205-1. PubMed DOI
Cheng Y., Prusoff W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973;22:3099–3108. PubMed
Hassan S.T.S., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC
Dassault Systèmes BIOVIA . Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes; San Diego, CA, USA: 2017.