Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32178484
PubMed Central
PMC7140700
DOI
10.3390/cells9030698
PII: cells9030698
Knihovny.cz E-zdroje
- Klíčová slova
- assimilatory, cysteine biosynthesis, hydrogen sulfide, intestinal microbiota, sulfate reduction, sulfate-reducing bacteria, toxicity,
- MeSH
- Bacteria patogenita MeSH
- lidé MeSH
- metabolické sítě a dráhy MeSH
- sírany metabolismus MeSH
- střevní mikroflóra imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- sírany MeSH
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.
Zobrazit více v PubMed
Barton L.L., Fauque G.D. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv. Appl. Microbiol. 2009;68:41–98. PubMed
Carbonero F., Benefiel A.C., Alizadeh-Ghamsari A.H., Gaskins H.R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 2012;3:448. doi: 10.3389/fphys.2012.00448. PubMed DOI PMC
Cani P.D. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67:1716–1725. doi: 10.1136/gutjnl-2018-316723. PubMed DOI PMC
Kushkevych I. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Studia Biologica. 2016;10:197–228. doi: 10.30970/sbi.1001.560. DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. J. Clin. Med. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Barton L.L., Fardeau M.L., Fauque G.D. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met. Ions Life Sci. 2014;14:237–277. PubMed
Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulfate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 1993;12:117–125. doi: 10.1111/j.1574-6941.1993.tb00023.x. DOI
Gibson G.R., Macfarlane G.T., Cummings J.H. Occurrence of sulfate-reducing bacteria in human faeces and the relationship of dissimilatory sulfate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 1988;65:103–111. doi: 10.1111/j.1365-2672.1988.tb01498.x. PubMed DOI
Gibson G.R. Physiology and ecology of the sulfate-reducing bacteria. J. Appl. Bacteriol. 1990;69:769–797. doi: 10.1111/j.1365-2672.1990.tb01575.x. PubMed DOI
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline- 2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36:106–113. PubMed
Wagner M., Roger A.J., Flax J.L., Brusseau G.A., Stahl D.A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 1998;180:2975–2982. doi: 10.1128/JB.180.11.2975-2982.1998. PubMed DOI PMC
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. (Wars.) 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Schiff J.A. Pathways of assimilatory sulphate reduction in plants and microorganisms. Ciba Found. Symp. 1979;72:49–69. PubMed
Florin T.H.J., Neale G., Goretski S., Cumming J.H. The sulfate content of foods and beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Weinstein C.L., Haschemeyer R.H., Griffith O.W. In vivo studies of cysteine metabolism. Use of D-cysteinesulfinate, a novel cysteinesulfinate decarboxylase inhibitor, to probe taurine and pyruvate synthesis. J. Biol. Chem. 1988;263:16568–16579. PubMed
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. (Wars.) 2018;13:344–349. PubMed PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Baron E.J., Summanen P., Downes J., Roberts M.C., Wexler H., Finegold S.M. Bilophila wadsworthia, gen-nov and sp-nov, a unique Gram-negative Anaerobic rod recovered from appendicitis specimens and human feces. J. Gen. Microbiol. 1989;135:3405–3411. PubMed
Kelly D.J., Myers J.D. A sulfite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology. 2005;151:233–242. PubMed
Metaxas M.A., Delwiche E.A. The L-cysteine desulfhydrase of Escherichia coli. J. Bacteriol. 1955;70:735–737. doi: 10.1128/JB.70.6.735-737.1955. PubMed DOI PMC
Shatalin K., Shatalina E., Mironov A., Nudler E. H2S: A universal defense against antibiotics in bacteria. Science. 2011;334:986–990. doi: 10.1126/science.1209855. PubMed DOI
Kredich N.M., Keenan B.S., Foote L.J. Purification and subunits structure of cysteine desulfhydrase from Salmonella typhimurium. J. Biol. Chem. 1972;247:7157–7162. PubMed
Wheeler P.R., Coldham N.G., Keating L., Gordon S.V., Wooff E.E., Parish T., Hewinson R.G. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J. Biol. Chem. 2005;280:8069–8078. doi: 10.1074/jbc.M412540200. PubMed DOI
Kim Y.K., Lee H., Kho H.S., Chung J.W., Chung S.C. Volatile sulfur compounds produced by Helicobacter pylori. J. Clin. Gastroenterol. 2006;40:421–426. PubMed
Yano T., Fukamachi H., Yamamoto M., Igarashi T. Characterization of L-cysteine desulfhydrase from Prevotella intermedia. Oral Microbiol. Immunol. 2009;24:485–492. doi: 10.1111/j.1399-302X.2009.00546.x. PubMed DOI
Yoshida Y., Ito S., Kamo M., Kezuka Y., Tamura H., Kunimatsu K., Kato H. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. pnucleatum ATCC25586. Microbiology. 2010;156:2260–2269. doi: 10.1099/mic.0.039180-0. PubMed DOI
Yoshida A., Takahashi Y., Nagata E., Hoshino T., Oho T., Awano S., Takehara T., Ansai T. Streptococcus anginosusl cysteine desulfhydrase gene expression is associated with abscess formationin BALB/c mice. Mol. Oral Microbiol. 2011;26:221–227. PubMed
Wright D.P., Rosendale D.I., Roberton A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol. Lett. 2000;190:73–79. doi: 10.1111/j.1574-6968.2000.tb09265.x. PubMed DOI
Slomiany B.L., Murty V.L.N., Piotrowski J., Grabska M., Slomiany A. Glycosulfatase activity of Helicobacter pylori toward human gastric mucin effect of sucralfate. Am. J. Gastroenterol. 1992;87:1132–1137. PubMed
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5’-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 2002;184:278–289. doi: 10.1128/JB.184.1.278-289.2002. PubMed DOI PMC
Rabus R.T., Hansen A., Widdel F. Dissimilatory Sulfate and Sulfur-Reducing Prokaryotes. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackenbrandt E., editors. The Prokaryotes. Springer; New York, NY, USA: 2006. pp. 659–768.
Barton L.L., Hamilton W.A. Sulfate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambrige, UK: 2010. 553p
Michaels G.B., Davidson J.T., Peck H.D., Jr. A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 1970;39:321–328. doi: 10.1016/0006-291X(70)90579-6. PubMed DOI
Heidelberg J.F., Seshadri R., Haveman S.A., Hemme C.L., Paulsen I.T., Kolonay J.F., Eisen J.A., Ward N., Methe B., Brinkac L.M., et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 2004;22:554–559. doi: 10.1038/nbt959. PubMed DOI
Santos A.A., Venceslau S.S., Grein F., Leavitt W.D., Dahl C., Johnston D.T., Pereira I.A. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science. 2015;350:1541–1545. doi: 10.1126/science.aad3558. PubMed DOI
Oliveira T.F., Vonrhein C., Matias P.M., Venceslau S.S., Pereira I.A., Archer M. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 2008;283:34141–34149. doi: 10.1074/jbc.M805643200. PubMed DOI PMC
Fauque G., Lino A.R., Czechowski M., Kang L., Der Vartanian D.V., Moura J.J., LeGall J., Moura I. Purification and characteriztion of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands. Biochem. Biophys. Acta. 1990;1040:112–118. PubMed
Kushkevych I., Cejnar J., Vítězová M., Vítěz T., Dordević D., Bomble Y.J. Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants. Int. J. Mol. Sci. 2020;21:283. doi: 10.3390/ijms21010283. PubMed DOI PMC
Fauque G., Le Gall J., Barton L.L. Sulfur reductase from thiophilic sulfate-reducing bacteria. In: Shively J.M., Barton L.L., editors. Variations in Autotrophic Life. Academic Press; London, UK: 1991. pp. 271–337.
Karkhoff-Schweizer R.R., Huber D.W., Voordouw G. Conservation of the Genes for Dissimilatory Sulfite Reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus Allows Their Detection by PCR. Appl. Environ. Microbiol. 1995;61:290–296. doi: 10.1128/AEM.61.1.290-296.1995. PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference Mendel Net; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Wong J.M., de Souza R., Kendall C.W., Emam A., Jenkins D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015. PubMed DOI
Zehnder A.J.B. Biology of Anaerobic Microorganisms. John Wiley and Sons; New York, NY, USA: 1988. 872p
Caffrey S.M., Voordouw G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek. 2010;97:11–20. doi: 10.1007/s10482-009-9383-y. PubMed DOI
Rowan F.E., Docherty N.G., Coffey J.C., O’Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the etiology of ulcerative colitis. Br. J. Surg. 2009;96:151–158. doi: 10.1002/bjs.6454. PubMed DOI
Wang R. Psysiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev. 2012;92:791–896. doi: 10.1152/physrev.00017.2011. PubMed DOI
Roediger W.E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease? Lancet. 1980;2:712–715. doi: 10.1016/S0140-6736(80)91934-0. PubMed DOI
Robbins P.W., Lipmann F. The enzymatic sequence in the biosynthesis of active sulfate. J. Am. Chem. Soc. 1956;78:6409–6410. doi: 10.1021/ja01605a029. DOI
Siegel L.M., Davis P.S. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein subunit structure and dissociation into hemoprotein and flavoprotein components. J. Biol. Chem. 1974;249:1587–1598. PubMed
Kredich N.M. Biosynthesis of Cystein. EcoSal Plus. 2008;3:1–30. doi: 10.1128/ecosalplus.3.6.1.11. PubMed DOI
Kredich N.M., Becker M.A., Tomkins G.M. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J. Biol. Chem. 1969;244:2428–2439. PubMed
Riley M., Abe T., Arnaud M.B., Berlyn M.K.B., Blattner F.R., Chaudhuri R.R., Glasner J.D., Horiuchi T., Keseler I.M., Kosuge T., et al. Escherichia coli K-12: A cooperatively developer annotation snapshot. Nucleic Acids Res. 2006;34:1–9. doi: 10.1093/nar/gkj405. PubMed DOI PMC
Sirko A., Hryniewicz M., Hulanicka D., Böck A. Sulfate and thiosulfate transport in Escherichia coli K-12: Nucleotide sequence and expression of the cysTWAM gene cluster. J. Bacteriol. 1990;172:3351–3357. doi: 10.1128/JB.172.6.3351-3357.1990. PubMed DOI PMC
Satishchandran C., Markham G.D. Adenosine-5-phosphosulfate kinase from Escherichia coli KI2. J. Biol. Chem. 1989;264:15012–15021. PubMed
Cooper A.J. Biochemistry of sulfur-containing amino acids. Annu. Rev. Biochem. 1983;52:187–222. doi: 10.1146/annurev.bi.52.070183.001155. PubMed DOI
Krone F.A., Westphal G., Schwenn J.D. Characterisation of the gene cysH and of its product phospho-adenylylsulfate reductase from Escherichia coli. Mol. Gen. Genet. 1991;225:314–319. doi: 10.1007/BF00269864. PubMed DOI
Zeghouf M., Fontecave M., Coves J.A. A simplified functional version of the Escherichia coli sulfite reductase. J. Biol. Chem. 2000;275:37651–37656. doi: 10.1074/jbc.M005619200. PubMed DOI
Wu J.Y., Siegel L.M., Kredich N.M. High-level expression of Escherichia coli NADPH-sulfite reductase: Requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J. Bacteriol. 1991;173:325–333. doi: 10.1128/JB.173.1.325-333.1991. PubMed DOI PMC
Hindson V.J., Moody P.C., Rowe A.J., Shaw W.V. Serine acetyltransferase from Escherichia coli is a dimer of trimers. J. Biol. Chem. 2000;275:461–466. doi: 10.1074/jbc.275.1.461. PubMed DOI
Hulanicka M.D., Hallquist S.G., Kredich N.M., Mojica T.A. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J. Bacteriol. 1979;140:141–146. doi: 10.1128/JB.140.1.141-146.1979. PubMed DOI PMC
Whitford D. Proteins: Structure and Function. Wiley; New York, NY, USA: 2005. 542p
Barnes M.R. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data. Wiley; New York, NY, USA: 2007. 576p
Rausch T., Wachter A. Sulfur metabolism: A versatile platform for launching defence operations. Trends. Plant Sci. 2005;10:503–509. doi: 10.1016/j.tplants.2005.08.006. PubMed DOI
Droux M., Ruffet M.L., Douce R., Job D. Interactions between serine acetyltransferase and O-acetylserine(thiol) lyase in higher plants. Structural and kinetic properties of the free and bound enzymes. Eur. J. Biochem. 1998;255:235–245. doi: 10.1046/j.1432-1327.1998.2550235.x. PubMed DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI
Peck H.D., Jr. Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol. 1961;82:933–939. doi: 10.1128/JB.82.6.933-939.1961. PubMed DOI PMC
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulfate-reducing bacteria in gut contents from healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 1991;86:103–111. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI
Boronat A., Britton P., Jones-Mortimer M.C., Kornberg H.L., Lee L.G., Murfitt D., Parra F. Location on the Escherichia coli genome of a gene specifying O-acetylserine(thiol)lyase. J. Gen. Microbiol. 1984;130:673–685. doi: 10.1099/00221287-130-3-673. PubMed DOI
Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances