Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria

. 2020 Mar 12 ; 9 (3) : . [epub] 20200312

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32178484

Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.

Zobrazit více v PubMed

Barton L.L., Fauque G.D. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv. Appl. Microbiol. 2009;68:41–98. PubMed

Carbonero F., Benefiel A.C., Alizadeh-Ghamsari A.H., Gaskins H.R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 2012;3:448. doi: 10.3389/fphys.2012.00448. PubMed DOI PMC

Cani P.D. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67:1716–1725. doi: 10.1136/gutjnl-2018-316723. PubMed DOI PMC

Kushkevych I. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Studia Biologica. 2016;10:197–228. doi: 10.30970/sbi.1001.560. DOI

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC

Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.

Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. J. Clin. Med. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC

Barton L.L., Fardeau M.L., Fauque G.D. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met. Ions Life Sci. 2014;14:237–277. PubMed

Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulfate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 1993;12:117–125. doi: 10.1111/j.1574-6941.1993.tb00023.x. DOI

Gibson G.R., Macfarlane G.T., Cummings J.H. Occurrence of sulfate-reducing bacteria in human faeces and the relationship of dissimilatory sulfate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 1988;65:103–111. doi: 10.1111/j.1365-2672.1988.tb01498.x. PubMed DOI

Gibson G.R. Physiology and ecology of the sulfate-reducing bacteria. J. Appl. Bacteriol. 1990;69:769–797. doi: 10.1111/j.1365-2672.1990.tb01575.x. PubMed DOI

Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline- 2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36:106–113. PubMed

Wagner M., Roger A.J., Flax J.L., Brusseau G.A., Stahl D.A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 1998;180:2975–2982. doi: 10.1128/JB.180.11.2975-2982.1998. PubMed DOI PMC

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. (Wars.) 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Schiff J.A. Pathways of assimilatory sulphate reduction in plants and microorganisms. Ciba Found. Symp. 1979;72:49–69. PubMed

Florin T.H.J., Neale G., Goretski S., Cumming J.H. The sulfate content of foods and beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI

Weinstein C.L., Haschemeyer R.H., Griffith O.W. In vivo studies of cysteine metabolism. Use of D-cysteinesulfinate, a novel cysteinesulfinate decarboxylase inhibitor, to probe taurine and pyruvate synthesis. J. Biol. Chem. 1988;263:16568–16579. PubMed

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. (Wars.) 2018;13:344–349. PubMed PMC

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Baron E.J., Summanen P., Downes J., Roberts M.C., Wexler H., Finegold S.M. Bilophila wadsworthia, gen-nov and sp-nov, a unique Gram-negative Anaerobic rod recovered from appendicitis specimens and human feces. J. Gen. Microbiol. 1989;135:3405–3411. PubMed

Kelly D.J., Myers J.D. A sulfite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology. 2005;151:233–242. PubMed

Metaxas M.A., Delwiche E.A. The L-cysteine desulfhydrase of Escherichia coli. J. Bacteriol. 1955;70:735–737. doi: 10.1128/JB.70.6.735-737.1955. PubMed DOI PMC

Shatalin K., Shatalina E., Mironov A., Nudler E. H2S: A universal defense against antibiotics in bacteria. Science. 2011;334:986–990. doi: 10.1126/science.1209855. PubMed DOI

Kredich N.M., Keenan B.S., Foote L.J. Purification and subunits structure of cysteine desulfhydrase from Salmonella typhimurium. J. Biol. Chem. 1972;247:7157–7162. PubMed

Wheeler P.R., Coldham N.G., Keating L., Gordon S.V., Wooff E.E., Parish T., Hewinson R.G. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J. Biol. Chem. 2005;280:8069–8078. doi: 10.1074/jbc.M412540200. PubMed DOI

Kim Y.K., Lee H., Kho H.S., Chung J.W., Chung S.C. Volatile sulfur compounds produced by Helicobacter pylori. J. Clin. Gastroenterol. 2006;40:421–426. PubMed

Yano T., Fukamachi H., Yamamoto M., Igarashi T. Characterization of L-cysteine desulfhydrase from Prevotella intermedia. Oral Microbiol. Immunol. 2009;24:485–492. doi: 10.1111/j.1399-302X.2009.00546.x. PubMed DOI

Yoshida Y., Ito S., Kamo M., Kezuka Y., Tamura H., Kunimatsu K., Kato H. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. pnucleatum ATCC25586. Microbiology. 2010;156:2260–2269. doi: 10.1099/mic.0.039180-0. PubMed DOI

Yoshida A., Takahashi Y., Nagata E., Hoshino T., Oho T., Awano S., Takehara T., Ansai T. Streptococcus anginosusl cysteine desulfhydrase gene expression is associated with abscess formationin BALB/c mice. Mol. Oral Microbiol. 2011;26:221–227. PubMed

Wright D.P., Rosendale D.I., Roberton A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol. Lett. 2000;190:73–79. doi: 10.1111/j.1574-6968.2000.tb09265.x. PubMed DOI

Slomiany B.L., Murty V.L.N., Piotrowski J., Grabska M., Slomiany A. Glycosulfatase activity of Helicobacter pylori toward human gastric mucin effect of sucralfate. Am. J. Gastroenterol. 1992;87:1132–1137. PubMed

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI

Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC

Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5’-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 2002;184:278–289. doi: 10.1128/JB.184.1.278-289.2002. PubMed DOI PMC

Rabus R.T., Hansen A., Widdel F. Dissimilatory Sulfate and Sulfur-Reducing Prokaryotes. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackenbrandt E., editors. The Prokaryotes. Springer; New York, NY, USA: 2006. pp. 659–768.

Barton L.L., Hamilton W.A. Sulfate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambrige, UK: 2010. 553p

Michaels G.B., Davidson J.T., Peck H.D., Jr. A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 1970;39:321–328. doi: 10.1016/0006-291X(70)90579-6. PubMed DOI

Heidelberg J.F., Seshadri R., Haveman S.A., Hemme C.L., Paulsen I.T., Kolonay J.F., Eisen J.A., Ward N., Methe B., Brinkac L.M., et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 2004;22:554–559. doi: 10.1038/nbt959. PubMed DOI

Santos A.A., Venceslau S.S., Grein F., Leavitt W.D., Dahl C., Johnston D.T., Pereira I.A. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science. 2015;350:1541–1545. doi: 10.1126/science.aad3558. PubMed DOI

Oliveira T.F., Vonrhein C., Matias P.M., Venceslau S.S., Pereira I.A., Archer M. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 2008;283:34141–34149. doi: 10.1074/jbc.M805643200. PubMed DOI PMC

Fauque G., Lino A.R., Czechowski M., Kang L., Der Vartanian D.V., Moura J.J., LeGall J., Moura I. Purification and characteriztion of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands. Biochem. Biophys. Acta. 1990;1040:112–118. PubMed

Kushkevych I., Cejnar J., Vítězová M., Vítěz T., Dordević D., Bomble Y.J. Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants. Int. J. Mol. Sci. 2020;21:283. doi: 10.3390/ijms21010283. PubMed DOI PMC

Fauque G., Le Gall J., Barton L.L. Sulfur reductase from thiophilic sulfate-reducing bacteria. In: Shively J.M., Barton L.L., editors. Variations in Autotrophic Life. Academic Press; London, UK: 1991. pp. 271–337.

Karkhoff-Schweizer R.R., Huber D.W., Voordouw G. Conservation of the Genes for Dissimilatory Sulfite Reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus Allows Their Detection by PCR. Appl. Environ. Microbiol. 1995;61:290–296. doi: 10.1128/AEM.61.1.290-296.1995. PubMed DOI PMC

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI

Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference Mendel Net; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Wong J.M., de Souza R., Kendall C.W., Emam A., Jenkins D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015. PubMed DOI

Zehnder A.J.B. Biology of Anaerobic Microorganisms. John Wiley and Sons; New York, NY, USA: 1988. 872p

Caffrey S.M., Voordouw G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek. 2010;97:11–20. doi: 10.1007/s10482-009-9383-y. PubMed DOI

Rowan F.E., Docherty N.G., Coffey J.C., O’Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the etiology of ulcerative colitis. Br. J. Surg. 2009;96:151–158. doi: 10.1002/bjs.6454. PubMed DOI

Wang R. Psysiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev. 2012;92:791–896. doi: 10.1152/physrev.00017.2011. PubMed DOI

Roediger W.E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease? Lancet. 1980;2:712–715. doi: 10.1016/S0140-6736(80)91934-0. PubMed DOI

Robbins P.W., Lipmann F. The enzymatic sequence in the biosynthesis of active sulfate. J. Am. Chem. Soc. 1956;78:6409–6410. doi: 10.1021/ja01605a029. DOI

Siegel L.M., Davis P.S. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein subunit structure and dissociation into hemoprotein and flavoprotein components. J. Biol. Chem. 1974;249:1587–1598. PubMed

Kredich N.M. Biosynthesis of Cystein. EcoSal Plus. 2008;3:1–30. doi: 10.1128/ecosalplus.3.6.1.11. PubMed DOI

Kredich N.M., Becker M.A., Tomkins G.M. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J. Biol. Chem. 1969;244:2428–2439. PubMed

Riley M., Abe T., Arnaud M.B., Berlyn M.K.B., Blattner F.R., Chaudhuri R.R., Glasner J.D., Horiuchi T., Keseler I.M., Kosuge T., et al. Escherichia coli K-12: A cooperatively developer annotation snapshot. Nucleic Acids Res. 2006;34:1–9. doi: 10.1093/nar/gkj405. PubMed DOI PMC

Sirko A., Hryniewicz M., Hulanicka D., Böck A. Sulfate and thiosulfate transport in Escherichia coli K-12: Nucleotide sequence and expression of the cysTWAM gene cluster. J. Bacteriol. 1990;172:3351–3357. doi: 10.1128/JB.172.6.3351-3357.1990. PubMed DOI PMC

Satishchandran C., Markham G.D. Adenosine-5-phosphosulfate kinase from Escherichia coli KI2. J. Biol. Chem. 1989;264:15012–15021. PubMed

Cooper A.J. Biochemistry of sulfur-containing amino acids. Annu. Rev. Biochem. 1983;52:187–222. doi: 10.1146/annurev.bi.52.070183.001155. PubMed DOI

Krone F.A., Westphal G., Schwenn J.D. Characterisation of the gene cysH and of its product phospho-adenylylsulfate reductase from Escherichia coli. Mol. Gen. Genet. 1991;225:314–319. doi: 10.1007/BF00269864. PubMed DOI

Zeghouf M., Fontecave M., Coves J.A. A simplified functional version of the Escherichia coli sulfite reductase. J. Biol. Chem. 2000;275:37651–37656. doi: 10.1074/jbc.M005619200. PubMed DOI

Wu J.Y., Siegel L.M., Kredich N.M. High-level expression of Escherichia coli NADPH-sulfite reductase: Requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J. Bacteriol. 1991;173:325–333. doi: 10.1128/JB.173.1.325-333.1991. PubMed DOI PMC

Hindson V.J., Moody P.C., Rowe A.J., Shaw W.V. Serine acetyltransferase from Escherichia coli is a dimer of trimers. J. Biol. Chem. 2000;275:461–466. doi: 10.1074/jbc.275.1.461. PubMed DOI

Hulanicka M.D., Hallquist S.G., Kredich N.M., Mojica T.A. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J. Bacteriol. 1979;140:141–146. doi: 10.1128/JB.140.1.141-146.1979. PubMed DOI PMC

Whitford D. Proteins: Structure and Function. Wiley; New York, NY, USA: 2005. 542p

Barnes M.R. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data. Wiley; New York, NY, USA: 2007. 576p

Rausch T., Wachter A. Sulfur metabolism: A versatile platform for launching defence operations. Trends. Plant Sci. 2005;10:503–509. doi: 10.1016/j.tplants.2005.08.006. PubMed DOI

Droux M., Ruffet M.L., Douce R., Job D. Interactions between serine acetyltransferase and O-acetylserine(thiol) lyase in higher plants. Structural and kinetic properties of the free and bound enzymes. Eur. J. Biochem. 1998;255:235–245. doi: 10.1046/j.1432-1327.1998.2550235.x. PubMed DOI

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI

Peck H.D., Jr. Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol. 1961;82:933–939. doi: 10.1128/JB.82.6.933-939.1961. PubMed DOI PMC

Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulfate-reducing bacteria in gut contents from healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 1991;86:103–111. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI

Boronat A., Britton P., Jones-Mortimer M.C., Kornberg H.L., Lee L.G., Murfitt D., Parra F. Location on the Escherichia coli genome of a gene specifying O-acetylserine(thiol)lyase. J. Gen. Microbiol. 1984;130:673–685. doi: 10.1099/00221287-130-3-673. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism

. 2025 Feb 21 ; 11 (1) : 33. [epub] 20250221

The impact of 3-sulfo-taurolithocholic acid on ATPase activity in patients' colorectal cancer and normal colon tissues, and its hepatic effects in rodents

. 2024 ; 11 () : 1480122. [epub] 20241205

Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

. 2024 ; 11 () : 79-89. [epub] 20240314

NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria

. 2023 Aug 25 ; 13 (1) : 13922. [epub] 20230825

Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies

. 2023 Apr ; 9 (4) : e15452. [epub] 20230413

ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria

. 2021 Jun 15 ; 22 (12) : . [epub] 20210615

Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats

. 2021 Apr 13 ; 22 (8) : . [epub] 20210413

Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances

. 2020 Jul 23 ; 9 (8) : . [epub] 20200723

Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People

. 2020 Jun 19 ; 9 (6) : . [epub] 20200619

Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments

. 2020 Jun 17 ; 10 (6) : . [epub] 20200617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...