• This record comes from PubMed

AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats

. 2021 Feb 19 ; 11 (1) : 4271. [epub] 20210219

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33608612
PubMed Central PMC7896062
DOI 10.1038/s41598-021-83906-6
PII: 10.1038/s41598-021-83906-6
Knihovny.cz E-resources

To provide novel insights into the pathogenesis of heart failure-induced renal dysfunction, we compared the effects of ACE inhibitor (ACEi) and AT1 receptor blocker (ARB) on systemic and kidney hemodynamics during heart failure in normotensive HanSD and hypertensive transgenic (TGR) rats. High-output heart failure was induced by creating an aorto-caval fistula (ACF). After five weeks, rats were either left untreated or treatment with ACEi or ARB was started for 15 weeks. Subsequently, echocardiographic, renal hemodynamic and biochemical measurements were assessed. Untreated ACF rats with ACF displayed significantly reduced renal blood flow (RBF) (HanSD: 8.9 ± 1.0 vs. 4.7 ± 1.6; TGR: 10.2 ± 1.9 vs. 5.9 ± 1.2 ml/min, both P < .001), ACEi had no major RBF effect, whereas ARB completely restored RBF (HanSD: 5.6 ± 1.1 vs. 9.0 ± 1.5; TGR: 7.0 ± 1.2 vs. 10.9 ± 1.9 ml/min, both P < .001). RBF reduction in untreated and ACEi-treated rats was accompanied by renal hypoxia as measured by renal lactate dehydrogenase activity, which was ameliorated with ARB treatment (HanSD: 40 ± 4 vs. 42 ± 3 vs. 29 ± 5; TGR: 88 ± 4 vs. 76 ± 4 vs. 58 ± 4 milliunits/mL, all P < .01). Unlike improvement seen in ARB-treated rats, ACE inhibition didn't affect urinary nitrates compared to untreated ACF TGR rats (50 ± 14 vs. 22 ± 13 vs. 30 ± 13 μmol/mmol Cr, both P < .05). ARB was more effective than ACEi in reducing elevated renal oxidative stress following ACF placement. A marker of ACEi efficacy, the angiotensin I/angiotensin II ratio, was more than ten times lower in renal tissue than in plasma. Our study shows that ARB treatment, in contrast to ACEi administration, prevents renal hypoperfusion and hypoxia in ACF rats with concomitant improvement in NO bioavailability and oxidative stress reduction. The inability of ACE inhibition to improve renal hypoperfusion in ACF rats may result from incomplete intrarenal RAS suppression in the face of depleted compensatory mechanisms.

See more in PubMed

Savarese G, Lund LH. Global public health burden of heart failure. Card. Fail. Rev. 2017;3:7–11. doi: 10.15420/cfr.2016:25:2. PubMed DOI PMC

Branca L, Sbolli M, Metra M, Fudim M. Heart failure with mid-range ejection fraction: pro and cons of the new classification of Heart Failure by European Society of Cardiology guidelines. ESC Hear. Fail. 2020;7:381–399. doi: 10.1002/ehf2.12586. PubMed DOI PMC

Senni M, et al. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur. Heart J. 2014;35:2797–2815. doi: 10.1093/eurheartj/ehu204. PubMed DOI PMC

Di Lullo L, et al. Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J. 2017;69:255–265. doi: 10.1016/j.ihj.2017.01.005. PubMed DOI PMC

Janani R, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139:e840–e878. PubMed

Hillege H, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–210. doi: 10.1161/01.CIR.102.2.203. PubMed DOI

Ruggenenti P, Remuzzi G. Worsening kidney function in decompensated heart failure: treat the heart, don’t mind the kidney. Eur. Heart J. 2011;32:2476–2478. doi: 10.1093/eurheartj/ehr242. PubMed DOI

Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012;21:365–371. doi: 10.1016/j.carpath.2011.11.007. PubMed DOI

Damman K, Testani JM. The kidney in heart failure: an update. Eur. Heart J. 2015;36:1437–1444. doi: 10.1093/eurheartj/ehv010. PubMed DOI PMC

Miller AJ, Arnold AC. The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin. Auton. Res. 2019;29:231–243. doi: 10.1007/s10286-018-0572-5. PubMed DOI PMC

Zablocki D, Sadoshima J. Angiotensin II and oxidative stress in the failing heart. Antioxid. Redox Signal. 2012;19:1095–1109. doi: 10.1089/ars.2012.4588. PubMed DOI PMC

Januzzi JL, Ibrahim NE. Renin-angiotensin system blockade in heart failure. J. Am. Coll. Cardiol. 2017;69:820–822. doi: 10.1016/j.jacc.2016.10.083. PubMed DOI

Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC

Červenka L, et al. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI

Wu J, et al. Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS ONE. 2015;10:e0134579. doi: 10.1371/journal.pone.0134579. PubMed DOI PMC

Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am. J. Physiol. Circ. Physiol. 2001;280:H674–H683. doi: 10.1152/ajpheart.2001.280.2.H674. PubMed DOI

Kratky V, et al. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI

Abassi AZ, et al. Impaired nitric oxide-mediated renal vasodilation in rats with experimental heart failure. Circulation. 1997;96:3655–3664. doi: 10.1161/01.CIR.96.10.3655. PubMed DOI

Sergey B, et al. Effects of eprosartan on renal function and cardiac hypertrophy in rats with experimental heart failure. Hypertension. 1998;32:746–752. doi: 10.1161/01.HYP.32.4.746. PubMed DOI

Kala P, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. PubMed PMC

Oka T, Nishimura H, Ueyama M, Kubota J, Kawamura K. Lisinopril reduces cardiac hypertrophy and mortality in rats with aortocaval fistula. Eur. J. Pharmacol. 1993;234:55–60. doi: 10.1016/0014-2999(93)90705-M. PubMed DOI

Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp. Physiol. 2016;101:1192–1205. doi: 10.1113/EP085717. PubMed DOI

Haase VH. Mechanisms of hypoxia responses in renal tissue. J. Am. Soc. Nephrol. 2013;24:537–541. doi: 10.1681/ASN.2012080855. PubMed DOI

Liu ZZ, Bullen A, Li Y, Singh P. Renal oxygenation in the pathophysiology of chronic kidney disease. Front. Physiol. 2017;8:385. doi: 10.3389/fphys.2017.00385. PubMed DOI PMC

Norman J, Fine L. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 2006;33:989–996. doi: 10.1111/j.1440-1681.2006.04476.x. PubMed DOI

Goldfarb M, et al. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats. Kidney Int. 2001;60:607–613. doi: 10.1046/j.1523-1755.2001.060002607.x. PubMed DOI

Navar LG. Intrarenal renin-angiotensin system in regulation of glomerular function. Curr. Opin. Nephrol. Hypertens. 2014;23:38–45. doi: 10.1097/01.mnh.0000436544.86508.f1. PubMed DOI PMC

Ma TKW, Kam KKH, Yan BP, Lam Y-Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol. 2010;160:1273–1292. doi: 10.1111/j.1476-5381.2010.00750.x. PubMed DOI PMC

Becari C, Oliveira EB, Salgado MCO. Alternative pathways for angiotensin II generation in the cardiovascular system. Braz. J. Med. Biol. Res. 2011;44:914–919. doi: 10.1590/S0100-879X2011007500093. PubMed DOI

Santos RAS, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7) Physiol. Rev. 2017;98:505–553. doi: 10.1152/physrev.00023.2016. PubMed DOI PMC

Cohen-Segev R, et al. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histochem. 2014;116:1342–1349. doi: 10.1016/j.acthis.2014.08.006. PubMed DOI

Abassi Z, et al. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide. Am. J. Physiol. Physiol. 1998;274:F766–F774. doi: 10.1152/ajprenal.1998.274.4.F766. PubMed DOI

Hilton JG, et al. The effect of acute arteriovenous fistula on renal functions. J. Clin. Invest. 1955;34:732–736. doi: 10.1172/JCI103126. PubMed DOI PMC

Wu J, Cheng Z, Zhang M, Zhu P, Gu Y. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci. Rep. 2016;6:27493. doi: 10.1038/srep27493. PubMed DOI PMC

Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC. Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertens (Dallas, Tex. 1979) 1992;19:137–141. PubMed

Kishimoto T, Maekawa M, Abe Y, Yamamoto K. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int. 1973;4:259–266. doi: 10.1038/ki.1973.112. PubMed DOI

Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J. Nephrol. 2015;28:257–268. doi: 10.1007/s40620-014-0136-2. PubMed DOI

Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid. Redox Signal. 2014;20:74–101. doi: 10.1089/ars.2013.5259. PubMed DOI PMC

Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol. Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012. PubMed DOI PMC

Nishi EE, Bergamaschi CT, Campos RR. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp. Physiol. 2015;100:479–484. doi: 10.1113/expphysiol.2014.079889. PubMed DOI

Sharp TE, et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 2018;72:2609–2621. doi: 10.1016/j.jacc.2018.08.2186. PubMed DOI

Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res. Clin. Pract. 2019;38:414–426. doi: 10.23876/j.krcp.19.063. PubMed DOI PMC

Dell’Italia LJ. Translational success stories: angiotensin receptor 1 antagonists in heart failure. Circ. Res. 2011;109:437–452. doi: 10.1161/CIRCRESAHA.110.238550. PubMed DOI

Dézsi CA. Differences in the clinical effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a critical review of the evidence. Am. J. Cardiovasc. Drugs. 2014;14:167–173. doi: 10.1007/s40256-013-0058-8. PubMed DOI PMC

Tai C, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on cardiovascular events in patients with heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2017;17:257. doi: 10.1186/s12872-017-0686-z. PubMed DOI PMC

Telmisartan R. or Both in patients at high risk for vascular events. N. Engl. J. Med. 2008;358:1547–1559. doi: 10.1056/NEJMoa0801317. PubMed DOI

Phillips CO, Kashani A, Ko DK, Francis G, Krumholz HM. Adverse effects of combination angiotensin II receptor blockers plus angiotensin-converting enzyme inhibitors for left ventricular dysfunction: a quantitative review of data from randomized clinical trials. Arch. Intern. Med. 2007;167:1930–1936. doi: 10.1001/archinte.167.18.1930. PubMed DOI

Dimopoulos K, et al. Meta-analyses of mortality and morbidity effects of an angiotensin receptor blocker in patients with chronic heart failure already receiving an ACE inhibitor (alone or with a β-blocker) Int. J. Cardiol. 2004;93:105–111. doi: 10.1016/j.ijcard.2003.10.001. PubMed DOI

Holdiness A, Monahan K, Minor D, de Shazo RD. Renin angiotensin aldosterone system blockade: little to no rationale for ACE inhibitor and ARB combinations. Am. J. Med. 2011;124:15–19. doi: 10.1016/j.amjmed.2010.07.021. PubMed DOI

Langheinrich M, et al. The hypertensive Ren-2 transgenic rat TGR (mREN2) 27 in hypertension research characteristics and functional aspects. Am. J. Hypertens. 1996;9:506–512. doi: 10.1016/0895-7061(95)00400-9. PubMed DOI

Oka T, Nishimura H, Ueyama M, Kubota J, Kawamura K. Haemodynamic and neurohumoral changes in spontaneously hypertensive rats with aortocaval fistulae. Clin. Sci. 1993;84:531–535. doi: 10.1042/cs0840531. PubMed DOI

Bansal S, Prasad A, Linas S. Right heart failure—unrecognized cause of cardiorenal syndrome. J. Am. Soc. Nephrol. 2018;29:1795–1798. doi: 10.1681/ASN.2018020224. PubMed DOI PMC

Melenovsky V, et al. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI

Riha H, Papousek F, Neckar J, Pirk J, Ostadal B. Effects of isoflurane concentration on basic echocardiographic parameters of the left ventricle in rats. Physiol. Res. Academia Scientiarum Bohemoslovaca. 2012;61:419. PubMed

Dong Z, et al. Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Int. J. Cardiol. 2015;179:397–408. doi: 10.1016/j.ijcard.2014.11.033. PubMed DOI

Shlafer M, Shepard BM. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Sykora M, et al. Cardiac Cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model

. 2024 Oct ; 47 (10) : 2718-2730. [epub] 20240202

The impact of phosphodiesterase-5 inhibition or angiotensin-converting enzyme inhibition on right and left ventricular remodeling in heart failure due to chronic volume overload

. 2024 Feb ; 12 (1) : e1172.

The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula

. 2023 Dec ; 396 (12) : 3757-3773. [epub] 20230620

The treatment with trandolapril and losartan attenuates pressure and volume overload alternations of cardiac connexin-43 and extracellular matrix in Ren-2 transgenic rats

. 2023 Nov 27 ; 13 (1) : 20923. [epub] 20231127

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension

. 2023 Jan 01 ; 41 (1) : 99-114. [epub] 20221007

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...