AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33608612
PubMed Central
PMC7896062
DOI
10.1038/s41598-021-83906-6
PII: 10.1038/s41598-021-83906-6
Knihovny.cz E-resources
- MeSH
- Biomarkers MeSH
- Angiotensin II Type 1 Receptor Blockers pharmacology MeSH
- Hemodynamics drug effects MeSH
- Hypertension complications MeSH
- Angiotensin-Converting Enzyme Inhibitors pharmacology MeSH
- Blood Pressure MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Disease Susceptibility MeSH
- Receptor, Angiotensin, Type 1 metabolism MeSH
- Renal Insufficiency etiology metabolism prevention & control MeSH
- Renal Circulation drug effects MeSH
- Heart Failure complications etiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Angiotensin II Type 1 Receptor Blockers MeSH
- Angiotensin-Converting Enzyme Inhibitors MeSH
- Receptor, Angiotensin, Type 1 MeSH
To provide novel insights into the pathogenesis of heart failure-induced renal dysfunction, we compared the effects of ACE inhibitor (ACEi) and AT1 receptor blocker (ARB) on systemic and kidney hemodynamics during heart failure in normotensive HanSD and hypertensive transgenic (TGR) rats. High-output heart failure was induced by creating an aorto-caval fistula (ACF). After five weeks, rats were either left untreated or treatment with ACEi or ARB was started for 15 weeks. Subsequently, echocardiographic, renal hemodynamic and biochemical measurements were assessed. Untreated ACF rats with ACF displayed significantly reduced renal blood flow (RBF) (HanSD: 8.9 ± 1.0 vs. 4.7 ± 1.6; TGR: 10.2 ± 1.9 vs. 5.9 ± 1.2 ml/min, both P < .001), ACEi had no major RBF effect, whereas ARB completely restored RBF (HanSD: 5.6 ± 1.1 vs. 9.0 ± 1.5; TGR: 7.0 ± 1.2 vs. 10.9 ± 1.9 ml/min, both P < .001). RBF reduction in untreated and ACEi-treated rats was accompanied by renal hypoxia as measured by renal lactate dehydrogenase activity, which was ameliorated with ARB treatment (HanSD: 40 ± 4 vs. 42 ± 3 vs. 29 ± 5; TGR: 88 ± 4 vs. 76 ± 4 vs. 58 ± 4 milliunits/mL, all P < .01). Unlike improvement seen in ARB-treated rats, ACE inhibition didn't affect urinary nitrates compared to untreated ACF TGR rats (50 ± 14 vs. 22 ± 13 vs. 30 ± 13 μmol/mmol Cr, both P < .05). ARB was more effective than ACEi in reducing elevated renal oxidative stress following ACF placement. A marker of ACEi efficacy, the angiotensin I/angiotensin II ratio, was more than ten times lower in renal tissue than in plasma. Our study shows that ARB treatment, in contrast to ACEi administration, prevents renal hypoperfusion and hypoxia in ACF rats with concomitant improvement in NO bioavailability and oxidative stress reduction. The inability of ACE inhibition to improve renal hypoperfusion in ACF rats may result from incomplete intrarenal RAS suppression in the face of depleted compensatory mechanisms.
See more in PubMed
Savarese G, Lund LH. Global public health burden of heart failure. Card. Fail. Rev. 2017;3:7–11. doi: 10.15420/cfr.2016:25:2. PubMed DOI PMC
Branca L, Sbolli M, Metra M, Fudim M. Heart failure with mid-range ejection fraction: pro and cons of the new classification of Heart Failure by European Society of Cardiology guidelines. ESC Hear. Fail. 2020;7:381–399. doi: 10.1002/ehf2.12586. PubMed DOI PMC
Senni M, et al. New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur. Heart J. 2014;35:2797–2815. doi: 10.1093/eurheartj/ehu204. PubMed DOI PMC
Di Lullo L, et al. Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J. 2017;69:255–265. doi: 10.1016/j.ihj.2017.01.005. PubMed DOI PMC
Janani R, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139:e840–e878. PubMed
Hillege H, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–210. doi: 10.1161/01.CIR.102.2.203. PubMed DOI
Ruggenenti P, Remuzzi G. Worsening kidney function in decompensated heart failure: treat the heart, don’t mind the kidney. Eur. Heart J. 2011;32:2476–2478. doi: 10.1093/eurheartj/ehr242. PubMed DOI
Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012;21:365–371. doi: 10.1016/j.carpath.2011.11.007. PubMed DOI
Damman K, Testani JM. The kidney in heart failure: an update. Eur. Heart J. 2015;36:1437–1444. doi: 10.1093/eurheartj/ehv010. PubMed DOI PMC
Miller AJ, Arnold AC. The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin. Auton. Res. 2019;29:231–243. doi: 10.1007/s10286-018-0572-5. PubMed DOI PMC
Zablocki D, Sadoshima J. Angiotensin II and oxidative stress in the failing heart. Antioxid. Redox Signal. 2012;19:1095–1109. doi: 10.1089/ars.2012.4588. PubMed DOI PMC
Januzzi JL, Ibrahim NE. Renin-angiotensin system blockade in heart failure. J. Am. Coll. Cardiol. 2017;69:820–822. doi: 10.1016/j.jacc.2016.10.083. PubMed DOI
Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Červenka L, et al. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Wu J, et al. Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS ONE. 2015;10:e0134579. doi: 10.1371/journal.pone.0134579. PubMed DOI PMC
Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am. J. Physiol. Circ. Physiol. 2001;280:H674–H683. doi: 10.1152/ajpheart.2001.280.2.H674. PubMed DOI
Kratky V, et al. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI
Abassi AZ, et al. Impaired nitric oxide-mediated renal vasodilation in rats with experimental heart failure. Circulation. 1997;96:3655–3664. doi: 10.1161/01.CIR.96.10.3655. PubMed DOI
Sergey B, et al. Effects of eprosartan on renal function and cardiac hypertrophy in rats with experimental heart failure. Hypertension. 1998;32:746–752. doi: 10.1161/01.HYP.32.4.746. PubMed DOI
Kala P, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. PubMed PMC
Oka T, Nishimura H, Ueyama M, Kubota J, Kawamura K. Lisinopril reduces cardiac hypertrophy and mortality in rats with aortocaval fistula. Eur. J. Pharmacol. 1993;234:55–60. doi: 10.1016/0014-2999(93)90705-M. PubMed DOI
Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp. Physiol. 2016;101:1192–1205. doi: 10.1113/EP085717. PubMed DOI
Haase VH. Mechanisms of hypoxia responses in renal tissue. J. Am. Soc. Nephrol. 2013;24:537–541. doi: 10.1681/ASN.2012080855. PubMed DOI
Liu ZZ, Bullen A, Li Y, Singh P. Renal oxygenation in the pathophysiology of chronic kidney disease. Front. Physiol. 2017;8:385. doi: 10.3389/fphys.2017.00385. PubMed DOI PMC
Norman J, Fine L. Intrarenal oxygenation in chronic renal failure. Clin. Exp. Pharmacol. Physiol. 2006;33:989–996. doi: 10.1111/j.1440-1681.2006.04476.x. PubMed DOI
Goldfarb M, et al. Compensated heart failure predisposes to outer medullary tubular injury: studies in rats. Kidney Int. 2001;60:607–613. doi: 10.1046/j.1523-1755.2001.060002607.x. PubMed DOI
Navar LG. Intrarenal renin-angiotensin system in regulation of glomerular function. Curr. Opin. Nephrol. Hypertens. 2014;23:38–45. doi: 10.1097/01.mnh.0000436544.86508.f1. PubMed DOI PMC
Ma TKW, Kam KKH, Yan BP, Lam Y-Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol. 2010;160:1273–1292. doi: 10.1111/j.1476-5381.2010.00750.x. PubMed DOI PMC
Becari C, Oliveira EB, Salgado MCO. Alternative pathways for angiotensin II generation in the cardiovascular system. Braz. J. Med. Biol. Res. 2011;44:914–919. doi: 10.1590/S0100-879X2011007500093. PubMed DOI
Santos RAS, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7) Physiol. Rev. 2017;98:505–553. doi: 10.1152/physrev.00023.2016. PubMed DOI PMC
Cohen-Segev R, et al. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histochem. 2014;116:1342–1349. doi: 10.1016/j.acthis.2014.08.006. PubMed DOI
Abassi Z, et al. Regulation of intrarenal blood flow in experimental heart failure: role of endothelin and nitric oxide. Am. J. Physiol. Physiol. 1998;274:F766–F774. doi: 10.1152/ajprenal.1998.274.4.F766. PubMed DOI
Hilton JG, et al. The effect of acute arteriovenous fistula on renal functions. J. Clin. Invest. 1955;34:732–736. doi: 10.1172/JCI103126. PubMed DOI PMC
Wu J, Cheng Z, Zhang M, Zhu P, Gu Y. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci. Rep. 2016;6:27493. doi: 10.1038/srep27493. PubMed DOI PMC
Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC. Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertens (Dallas, Tex. 1979) 1992;19:137–141. PubMed
Kishimoto T, Maekawa M, Abe Y, Yamamoto K. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int. 1973;4:259–266. doi: 10.1038/ki.1973.112. PubMed DOI
Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J. Nephrol. 2015;28:257–268. doi: 10.1007/s40620-014-0136-2. PubMed DOI
Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid. Redox Signal. 2014;20:74–101. doi: 10.1089/ars.2013.5259. PubMed DOI PMC
Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol. Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012. PubMed DOI PMC
Nishi EE, Bergamaschi CT, Campos RR. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp. Physiol. 2015;100:479–484. doi: 10.1113/expphysiol.2014.079889. PubMed DOI
Sharp TE, et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 2018;72:2609–2621. doi: 10.1016/j.jacc.2018.08.2186. PubMed DOI
Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res. Clin. Pract. 2019;38:414–426. doi: 10.23876/j.krcp.19.063. PubMed DOI PMC
Dell’Italia LJ. Translational success stories: angiotensin receptor 1 antagonists in heart failure. Circ. Res. 2011;109:437–452. doi: 10.1161/CIRCRESAHA.110.238550. PubMed DOI
Dézsi CA. Differences in the clinical effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a critical review of the evidence. Am. J. Cardiovasc. Drugs. 2014;14:167–173. doi: 10.1007/s40256-013-0058-8. PubMed DOI PMC
Tai C, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on cardiovascular events in patients with heart failure: a meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2017;17:257. doi: 10.1186/s12872-017-0686-z. PubMed DOI PMC
Telmisartan R. or Both in patients at high risk for vascular events. N. Engl. J. Med. 2008;358:1547–1559. doi: 10.1056/NEJMoa0801317. PubMed DOI
Phillips CO, Kashani A, Ko DK, Francis G, Krumholz HM. Adverse effects of combination angiotensin II receptor blockers plus angiotensin-converting enzyme inhibitors for left ventricular dysfunction: a quantitative review of data from randomized clinical trials. Arch. Intern. Med. 2007;167:1930–1936. doi: 10.1001/archinte.167.18.1930. PubMed DOI
Dimopoulos K, et al. Meta-analyses of mortality and morbidity effects of an angiotensin receptor blocker in patients with chronic heart failure already receiving an ACE inhibitor (alone or with a β-blocker) Int. J. Cardiol. 2004;93:105–111. doi: 10.1016/j.ijcard.2003.10.001. PubMed DOI
Holdiness A, Monahan K, Minor D, de Shazo RD. Renin angiotensin aldosterone system blockade: little to no rationale for ACE inhibitor and ARB combinations. Am. J. Med. 2011;124:15–19. doi: 10.1016/j.amjmed.2010.07.021. PubMed DOI
Langheinrich M, et al. The hypertensive Ren-2 transgenic rat TGR (mREN2) 27 in hypertension research characteristics and functional aspects. Am. J. Hypertens. 1996;9:506–512. doi: 10.1016/0895-7061(95)00400-9. PubMed DOI
Oka T, Nishimura H, Ueyama M, Kubota J, Kawamura K. Haemodynamic and neurohumoral changes in spontaneously hypertensive rats with aortocaval fistulae. Clin. Sci. 1993;84:531–535. doi: 10.1042/cs0840531. PubMed DOI
Bansal S, Prasad A, Linas S. Right heart failure—unrecognized cause of cardiorenal syndrome. J. Am. Soc. Nephrol. 2018;29:1795–1798. doi: 10.1681/ASN.2018020224. PubMed DOI PMC
Melenovsky V, et al. The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI
Riha H, Papousek F, Neckar J, Pirk J, Ostadal B. Effects of isoflurane concentration on basic echocardiographic parameters of the left ventricle in rats. Physiol. Res. Academia Scientiarum Bohemoslovaca. 2012;61:419. PubMed
Dong Z, et al. Myocardial infarction accelerates glomerular injury and microalbuminuria in diabetic rats via local hemodynamics and immunity. Int. J. Cardiol. 2015;179:397–408. doi: 10.1016/j.ijcard.2014.11.033. PubMed DOI
Shlafer M, Shepard BM. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal. Biochem. 1984;137:269–276. doi: 10.1016/0003-2697(84)90084-8. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Sykora M, et al. Cardiac Cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int. J. Mol. Sci. 2019;20:3758. doi: 10.3390/ijms20153758. PubMed DOI PMC