A New Combination of Substrates: Biogas Production and Diversity of the Methanogenic Microorganisms
Status PubMed-not-MEDLINE Language English Country Poland Media electronic-ecollection
Document type Journal Article
PubMed
33817077
PubMed Central
PMC7874741
DOI
10.1515/biol-2018-0017
PII: biol-2018-0017
Knihovny.cz E-resources
- Keywords
- Archaea, anaerobic digesters, biogas, methane production, methanogenic microorganisms,
- Publication type
- Journal Article MeSH
Agriculture, food industry, and manufacturing are just some of the areas where anaerobic technology can be used. Currently, anaerobic technologies are mainly used for wastewater treatment, solid waste treatment, or for the production of electrical and thermal energy from energy crops processing. However, a clear trend is towards more intensive use of this technology in biomass and biodegradable waste processing and hydrogen or biomethane production. An enormous number of anaerobic digesters are operating worldwide but there is very little information about the effect of different substrate combinations on the methanogens community. This is due to the fact that each of the anaerobic digesters has its own unique microbial community. For the most effective management of anaerobic processes it would be important to know the composition of a consortium of anaerobic microorganisms present in anaerobic digesters processing different input combinations of raw material. This paper characterizes the effect of the input raw materials on the diversity of the methanogen community. Two predominant microorganisms in anaerobic digesters were found to be 99% identity by the sequences of the 16S rRNA gene to the Methanoculleus and Thermogymnomonas genera deposited in GenBank.
Department of Biology Laboratory of Microbial Chemistry University of New Mexico New Mexico USA
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Institute of Biophysics of the CAS Department of Plant Developmental Genetics Brno Czech Republic
See more in PubMed
Krich K., Augenstein D., Batmale J.P., Benemann J., Rutledge B., Salour D.. Biomethane from Dairy Waste. A Sourcebook for the Production and Use of Renewable Natural Gas in California. USDA Rural Development. 2005
Wilkie A. Harwood C., Demain A. Biowaste and Biofuels. ASM Press; Washington.: 2008. Biomethane from Biomass; pp. 195–205.
Ahring B., Ibrahim A.A., Mladenovska Z.. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour. 2001;35:2446–2452. PubMed
Ziemiński K., Frąc M.. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African. J. Biotech. 2012;11:4127–4139.
Kushkevych I., Vítězová M., Vítěz T., Bartoš M.. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sciences. 2017;12:82–91.
Bouallagui H., Torrijos M., Godon J., Moletta R., Cheikh R., Touhami Y.. et al. Microbial monitoring by molecular tools of a two-phase anaerobic fermenter treating fruit and vegetable wastes. Biotechnol. Lett. 26:857–862. PubMed
Conrad R.. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999;28:193–202.
Demirel B., Scherer P.. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 2008;7:173–190.
Griffin M.E., McMahon K.D., Mackie R.I., Raskin L.. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Eng. 2000;57:342–355. PubMed
Grothenhuis J.T., Smith M., Plugge C.M., Yuansheng X., Lammeren A.A., Stams A.J.. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 1991;57:1942–1949. PubMed PMC
Ilyin V.K., Korniushenkova I.N., Starkova L.V., Lauriniavichius K.S.. Study of methanogenesis during bioutilization of plant residuals. Acta Astronautica. 2005;56:465–470. PubMed
Jäckel U., Thummes K., Kämpfer P.. Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 2005;52:175–184. PubMed
Yadvika Santosh, Sreekrishnan T.R., Kohli S., Rana V.. Enhancement of biogas production from solid substrates using different techniques. Bioresour Technol. 2004;95:1–10. PubMed
Scherer P.A., Vollmer G.R., Fakhouri T., Martensen S.. Development of methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions. Water Sci. Technol. 2000;41:83–91. PubMed
Schink B.. Energetics of syntrophic cooperation in methanogenic degradation. Microb. Mol. Biol. Rev. 1997;61:262–280. PubMed PMC
Weiland P.. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. PubMed
CSN EN 14346. Characterization of waste – Calculation of dry matter by determination of dry residue or water content. Czech Standards Institute 2007
CSN EN 15169. Characterization of waste – Determination of loss on ignition in waste, sludge and sediments. Czech Standards Institute 2007
CSN EN 12176. Characterization of sludge – Determination of pH-value. Czech Standards Institute 1999
Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z.. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. PubMed PMC
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K.. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. PubMed PMC
Altschul S.F., Gish W., Mille W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Clustal W.. and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Chen P.Y., Popovich P.M.. Correlation: Parametric and Nonparametric Measures. Sage University Papers Series on Quantitative Applications in the Social Sciences. 2002
Bailey N.T.J. Statistical Methods in Biology. third. Cambridge University Press; Cambridge: 1995.
Zeikus J.G.. The biology of methanogenic bacteria. Bact. Rev. 1977;41:514–541. PubMed PMC
Amon T., Amon B., Kryvoruchko V., Zollitsch W., Mayer K., Gruber L.. Biogas production from maize and dairy cattle manure – influence of biomass composition on the methane yield. Agric. Ecosys. Environ. 2007;118:173–182.
Itoh T., Yoshikawa N., Takashina T.. Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone. Japan. Int. J. Syst. Evol. Microbiol. 2007;57:2557–2561. PubMed
Maus I., Wibberg D., Winkler A., Pühler A., Schnürer A., Schlütera A.. Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor Genome. Announcements. 2016;4:e00568–16. PubMed PMC
Chynoweth D.P., Turick C.E., Owens J.M., Jerger D.E., Peck M.W.. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioen. 1993;5:95–111.
Jaenicke S., Ander C., Bekel T., Bisdorf R., Dröge M., Gartemann K.H.. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One. 2011;6:e14519. PubMed PMC
Stolze Y., Zakrzewski M., Maus I., Eikmeyer F., Jaenicke S., Rottmann N.. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels. 2015;8:14. PubMed PMC
Moestedt J., Müller B., Westerholm M., Schnürer A.. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 2016;9:180–194. PubMed PMC
Westerholm M., Levén L., Schnürer A.. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl. Environ. Microbiol. 2012;78:7619–7625. PubMed PMC
Westerholm M., Müller B., Isaksson S., Schnürer A.. Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnol. Biofuels. 2015;8:154. PubMed PMC
Ziganshina E.E., Belostotskiy D.E., Shushlyaev R.V., Miluykov V.A., Vankov P.Y., Ziganshin A.M.. Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes. J. Microbiol. Biotechnol. 2014;24:1464–772. PubMed
Ziganshin A.M., Ziganshina E.E., Kleinsteuber S., Nikolausz M.. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters. Archaea. 2016:12. Article ID 3401272. PubMed PMC
Fotidis I.A., Wang H., Fiedel N.R., Luo G., Karakashev D.B., Angelidaki I.. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ. Sci. Technol. 2014;48:7669–7676. PubMed
Maus I., Wibberg D., Stantscheff R., Stolze Y., Blom J., Eikmeyer F.G.. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. J. Biotechnol. 2014;201:43–53. PubMed
Maus I., Wibberg D., Stantscheff R., Eikmeyer F.G., Seffner A., Boelter J.. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), isolated from a sewage sludge digester. J. Bacteriol. 2012;194:5487–5488. PubMed PMC
Sundberg C., Al-Soud W.A., Larsson M., Alm E., Yekta S.S., Svensson B.H., Sørensen S.J., Karlsson A.. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol. 2013;85:612–626. PubMed
Kushkevych I.V.. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Polish J Microbiol. 2015;64:107–114. PubMed
Kushkevych I., Fafula R., Parak T., Bartos M.. Activity of Na+ / K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.
Kushkevych I.V.. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochimica Polonica. 2015;62:1037–108. PubMed
Kushkevych I., Vítězová M., Fedrová M., Vochyanová Z., Paráková L., Hošek J.. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.
Kushkevych I., Kollar P., Suchy P., Parak K., Pauk K., Imramovsky A.. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D.. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biome. 2016;14:125–130.
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J.. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. App.Biomed. 2018;16:1–6.
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M.. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:1–6. PubMed
Kováč J., Kushkevych I.. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. Proceed. Intern. PhD Stud. Conf. MendelNet. 2017:702–707.
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances
Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria
ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes
Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants
Analysis of pH Dose-dependent Growth of Sulfate-reducing Bacteria