• This record comes from PubMed

A New Combination of Substrates: Biogas Production and Diversity of the Methanogenic Microorganisms

. 2018 Jan ; 13 () : 119-128. [epub] 20180423

Status PubMed-not-MEDLINE Language English Country Poland Media electronic-ecollection

Document type Journal Article

Agriculture, food industry, and manufacturing are just some of the areas where anaerobic technology can be used. Currently, anaerobic technologies are mainly used for wastewater treatment, solid waste treatment, or for the production of electrical and thermal energy from energy crops processing. However, a clear trend is towards more intensive use of this technology in biomass and biodegradable waste processing and hydrogen or biomethane production. An enormous number of anaerobic digesters are operating worldwide but there is very little information about the effect of different substrate combinations on the methanogens community. This is due to the fact that each of the anaerobic digesters has its own unique microbial community. For the most effective management of anaerobic processes it would be important to know the composition of a consortium of anaerobic microorganisms present in anaerobic digesters processing different input combinations of raw material. This paper characterizes the effect of the input raw materials on the diversity of the methanogen community. Two predominant microorganisms in anaerobic digesters were found to be 99% identity by the sequences of the 16S rRNA gene to the Methanoculleus and Thermogymnomonas genera deposited in GenBank.

See more in PubMed

Krich K., Augenstein D., Batmale J.P., Benemann J., Rutledge B., Salour D.. Biomethane from Dairy Waste. A Sourcebook for the Production and Use of Renewable Natural Gas in California. USDA Rural Development. 2005

Wilkie A. Harwood C., Demain A. Biowaste and Biofuels. ASM Press; Washington.: 2008. Biomethane from Biomass; pp. 195–205.

Ahring B., Ibrahim A.A., Mladenovska Z.. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour. 2001;35:2446–2452. PubMed

Ziemiński K., Frąc M.. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African. J. Biotech. 2012;11:4127–4139.

Kushkevych I., Vítězová M., Vítěz T., Bartoš M.. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sciences. 2017;12:82–91.

Bouallagui H., Torrijos M., Godon J., Moletta R., Cheikh R., Touhami Y.. et al. Microbial monitoring by molecular tools of a two-phase anaerobic fermenter treating fruit and vegetable wastes. Biotechnol. Lett. 26:857–862. PubMed

Conrad R.. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999;28:193–202.

Demirel B., Scherer P.. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 2008;7:173–190.

Griffin M.E., McMahon K.D., Mackie R.I., Raskin L.. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Eng. 2000;57:342–355. PubMed

Grothenhuis J.T., Smith M., Plugge C.M., Yuansheng X., Lammeren A.A., Stams A.J.. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 1991;57:1942–1949. PubMed PMC

Ilyin V.K., Korniushenkova I.N., Starkova L.V., Lauriniavichius K.S.. Study of methanogenesis during bioutilization of plant residuals. Acta Astronautica. 2005;56:465–470. PubMed

Jäckel U., Thummes K., Kämpfer P.. Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 2005;52:175–184. PubMed

Yadvika Santosh, Sreekrishnan T.R., Kohli S., Rana V.. Enhancement of biogas production from solid substrates using different techniques. Bioresour Technol. 2004;95:1–10. PubMed

Scherer P.A., Vollmer G.R., Fakhouri T., Martensen S.. Development of methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions. Water Sci. Technol. 2000;41:83–91. PubMed

Schink B.. Energetics of syntrophic cooperation in methanogenic degradation. Microb. Mol. Biol. Rev. 1997;61:262–280. PubMed PMC

Weiland P.. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. PubMed

CSN EN 14346. Characterization of waste – Calculation of dry matter by determination of dry residue or water content. Czech Standards Institute 2007

CSN EN 15169. Characterization of waste – Determination of loss on ignition in waste, sludge and sediments. Czech Standards Institute 2007

CSN EN 12176. Characterization of sludge – Determination of pH-value. Czech Standards Institute 1999

Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z.. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. PubMed PMC

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K.. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. PubMed PMC

Altschul S.F., Gish W., Mille W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Clustal W.. and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed

Chen P.Y., Popovich P.M.. Correlation: Parametric and Nonparametric Measures. Sage University Papers Series on Quantitative Applications in the Social Sciences. 2002

Bailey N.T.J. Statistical Methods in Biology. third. Cambridge University Press; Cambridge: 1995.

Zeikus J.G.. The biology of methanogenic bacteria. Bact. Rev. 1977;41:514–541. PubMed PMC

Amon T., Amon B., Kryvoruchko V., Zollitsch W., Mayer K., Gruber L.. Biogas production from maize and dairy cattle manure – influence of biomass composition on the methane yield. Agric. Ecosys. Environ. 2007;118:173–182.

Itoh T., Yoshikawa N., Takashina T.. Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone. Japan. Int. J. Syst. Evol. Microbiol. 2007;57:2557–2561. PubMed

Maus I., Wibberg D., Winkler A., Pühler A., Schnürer A., Schlütera A.. Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor Genome. Announcements. 2016;4:e00568–16. PubMed PMC

Chynoweth D.P., Turick C.E., Owens J.M., Jerger D.E., Peck M.W.. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioen. 1993;5:95–111.

Jaenicke S., Ander C., Bekel T., Bisdorf R., Dröge M., Gartemann K.H.. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One. 2011;6:e14519. PubMed PMC

Stolze Y., Zakrzewski M., Maus I., Eikmeyer F., Jaenicke S., Rottmann N.. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels. 2015;8:14. PubMed PMC

Moestedt J., Müller B., Westerholm M., Schnürer A.. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 2016;9:180–194. PubMed PMC

Westerholm M., Levén L., Schnürer A.. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl. Environ. Microbiol. 2012;78:7619–7625. PubMed PMC

Westerholm M., Müller B., Isaksson S., Schnürer A.. Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnol. Biofuels. 2015;8:154. PubMed PMC

Ziganshina E.E., Belostotskiy D.E., Shushlyaev R.V., Miluykov V.A., Vankov P.Y., Ziganshin A.M.. Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes. J. Microbiol. Biotechnol. 2014;24:1464–772. PubMed

Ziganshin A.M., Ziganshina E.E., Kleinsteuber S., Nikolausz M.. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters. Archaea. 2016:12. Article ID 3401272. PubMed PMC

Fotidis I.A., Wang H., Fiedel N.R., Luo G., Karakashev D.B., Angelidaki I.. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ. Sci. Technol. 2014;48:7669–7676. PubMed

Maus I., Wibberg D., Stantscheff R., Stolze Y., Blom J., Eikmeyer F.G.. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. J. Biotechnol. 2014;201:43–53. PubMed

Maus I., Wibberg D., Stantscheff R., Eikmeyer F.G., Seffner A., Boelter J.. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), isolated from a sewage sludge digester. J. Bacteriol. 2012;194:5487–5488. PubMed PMC

Sundberg C., Al-Soud W.A., Larsson M., Alm E., Yekta S.S., Svensson B.H., Sørensen S.J., Karlsson A.. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol. 2013;85:612–626. PubMed

Kushkevych I.V.. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Polish J Microbiol. 2015;64:107–114. PubMed

Kushkevych I., Fafula R., Parak T., Bartos M.. Activity of Na+ / K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.

Kushkevych I.V.. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochimica Polonica. 2015;62:1037–108. PubMed

Kushkevych I., Vítězová M., Fedrová M., Vochyanová Z., Paráková L., Hošek J.. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.

Kushkevych I., Kollar P., Suchy P., Parak K., Pauk K., Imramovsky A.. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed

Kushkevych I., Kollar P., Ferreira A.L., Palma D.. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biome. 2016;14:125–130.

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J.. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. App.Biomed. 2018;16:1–6.

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M.. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:1–6. PubMed

Kováč J., Kushkevych I.. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. Proceed. Intern. PhD Stud. Conf. MendelNet. 2017:702–707.

Newest 20 citations...

See more in
Medvik | PubMed

Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments

. 2024 ; 15 () : 1417714. [epub] 20240711

Archaeal community dynamics in biogas fermentation at various temperatures assessed by mcrA amplicon sequencing using different primer pairs

. 2021 Oct 06 ; 37 (11) : 188. [epub] 20211006

Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats

. 2021 Apr 13 ; 22 (8) : . [epub] 20210413

Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies

. 2021 Jan 26 ; 10 (3) : . [epub] 20210126

Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development

. 2021 Jan ; 27 () : 71-78. [epub] 20200324

Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes

. 2021 Jan ; 27 () : 55-69. [epub] 20200317

Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances

. 2020 Jul 23 ; 9 (8) : . [epub] 20200723

Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People

. 2020 Jun 19 ; 9 (6) : . [epub] 20200619

Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments

. 2020 Jun 17 ; 10 (6) : . [epub] 20200617

Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria

. 2020 Mar 12 ; 9 (3) : . [epub] 20200312

ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes

. 2020 Feb ; 10 (2) : 55. [epub] 20200122

Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants

. 2019 Dec 31 ; 21 (1) : . [epub] 20191231

Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases

. 2019 Nov 20 ; 9 (12) : . [epub] 20191120

The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small-Large Intestine Axis

. 2019 Oct 11 ; 8 (10) : . [epub] 20191011

Hydrogen Sulfide as a Toxic Product in the Small-Large Intestine Axis and its Role in IBD Development

. 2019 Jul 19 ; 8 (7) : . [epub] 20190719

Analysis of pH Dose-dependent Growth of Sulfate-reducing Bacteria

. 2019 ; 14 () : 66-74. [epub] 20190116

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...