Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
854126
European Research Council - International
19-11494S
Grantová Agentura České Republiky
PubMed
34440685
PubMed Central
PMC8393233
DOI
10.3390/cells10081916
PII: cells10081916
Knihovny.cz E-resources
- Keywords
- Synechocystis, carotenoids, high light, microdomains, non-photochemical quenching, photoinhibition, photoprotection, photosystems, thylakoid membrane,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Photosystem I Protein Complex genetics metabolism MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Carotenoids metabolism MeSH
- Light * MeSH
- Synechocystis metabolism radiation effects MeSH
- Thylakoids metabolism radiation effects MeSH
- Cell Size radiation effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Photosystem I Protein Complex MeSH
- Photosystem II Protein Complex MeSH
- Carotenoids MeSH
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0-30 min), (2) intermediate phase (30-120 min), and (3) slow acclimation phase (120-360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ-carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
See more in PubMed
Strašková A., Steinbach G., Konert G., Kotabová E., Komenda J., Tichý M., Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. Biochim. Biophys. Acta (BBA)-Bioenerg. 2019;1860 doi: 10.1016/j.bbabio.2019.07.008. PubMed DOI
Ruban A.V., Young A.J., Pascal A.A., Horton P. The Effects of lllumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994;104:227–234. doi: 10.1104/pp.104.1.227. PubMed DOI PMC
Casella S., Huang F., Mason D., Zhao G.Y., Johnson G.N., Mullineaux C.W., Liu L.N. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. Mol Plant. 2017;10:1434–1448. doi: 10.1016/j.molp.2017.09.019. PubMed DOI PMC
Grigoryeva N., Chistyakova L. Fluorescence Microscopic Spectroscopy for Investigation and Monitoring of Biological Diversity and Physiological State of Cyanobacterial Cultures. Cyanobacteria. Rij. IntechOpen. 2018:11–43. doi: 10.5772/intechopen.78044. DOI
Konert G., Steinbach G., Canonico M., Kaňa R. Protein arrangement factor: A new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. Physiol Plant. 2019;166:264–277. doi: 10.1111/ppl.12952. PubMed DOI
Canonico M., Konert G., Kaňa R. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.586543. PubMed DOI PMC
Andersson B., Anderson J.M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta. 1980;593:427–440. doi: 10.1016/0005-2728(80)90078-X. PubMed DOI
Albertsson P. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 2001;6:349–358. doi: 10.1016/S1360-1385(01)02021-0. PubMed DOI
Ruban A.V., Johnson M.P. Visualizing the dynamic structure of the plant photosynthetic membrane. Nat. Plants. 2015;1:15161. doi: 10.1038/nplants.2015.161. PubMed DOI
Vermaas W.F.J., Timlin J.A., Jones H.D.T., Sinclair M.B., Nieman L.T., Hamad S.W., Melgaard D.K., Haaland D.M. In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc. Natl. Acad. Sci. USA. 2008;105:4050–4055. doi: 10.1073/pnas.0708090105. PubMed DOI PMC
Sherman D.M., Troyan T.A., Sherman L.A. Localization of membrane-proteins in the cyanobacterium synechococcus sp pcc7942-radial asymmetry in the photosynthetic complexes. Plant Physiol. 1994;106:251–262. doi: 10.1104/pp.106.1.251. PubMed DOI PMC
Huokko T., Ni T., Dykes G.F., Simpson D.M., Brownridge P., Conradi F.D., Beynon R.J., Nixon P.J., Mullineaux C.W., Zhang P., et al. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nat. Commun. 2021;12:3475. doi: 10.1038/s41467-021-23680-1. PubMed DOI PMC
Mahbub M., Hemm L., Yang Y., Kaur R., Carmen H., Engl C., Huokko T., Riediger M., Watanabe S., Liu L.N., et al. mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nat. Plants. 2020;6:1179–1191. doi: 10.1038/s41477-020-00764-2. PubMed DOI
Mullineaux C.W., Liu L.-N. Membrane Dynamics in Phototrophic Bacteria. Annu. Rev. Microbiol. 2020;74:633–654. doi: 10.1146/annurev-micro-020518-120134. PubMed DOI
Sarcina M., Bouzovitis N., Mullineaux C.W. Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. Plant Cell. 2006;18:457–464. doi: 10.1105/tpc.105.035808. PubMed DOI PMC
Tamary E., Kiss V., Nevo R., Adam Z., Bernat G., Rexroth S., Rogner M., Reich Z. Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim. Biophys. Acta-Bioenerg. 2012;1817:319–327. doi: 10.1016/j.bbabio.2011.11.008. PubMed DOI
Steinbach G., Kaňa R. Automated microscopy: Macro language controlling a confocal microscope and its external illumination–adaptation for photosynthetic organisms. Microsc. Microanal. 2016;22:258–263. doi: 10.1017/S1431927616000556. PubMed DOI
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: Orange carotenoid protein-related photoprotection and state transitions. Photosynth. Res. 2015;126:3–17. doi: 10.1007/s11120-014-0031-7. PubMed DOI
Adir N., Zer H., Shochat S., Ohad I. Photoinhibition-a historical perspective. Photosynth. Res. 2003;76:343–370. doi: 10.1023/A:1024969518145. PubMed DOI
Kirilovsky D., Kaňa R., Prášil O. Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. In: Demmig-Adams B., Garab G., Adams W. III, Govindjee, editors. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer; Dordrecht, The Netherlands: 2014. pp. 471–501. DOI
Kirilovsky D. Photoprotection in cyanobacteria: The orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 2007;93:7–16. doi: 10.1007/s11120-007-9168-y. PubMed DOI
Kok B. On the Inhibition of Photosynthesis by Intense Light. Biochim Biophys. Acta. 1956;21:234–244. doi: 10.1016/0006-3002(56)90003-8. PubMed DOI
Sonoike K. Photoinhibition of Photosystem I: Its Physiological Significance in the Chilling Sensitivity of Plants. Plant Cell Physiol. 1996;37:239–247. doi: 10.1093/oxfordjournals.pcp.a028938. DOI
Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 2007;1767:414–421. doi: 10.1016/j.bbabio.2006.11.019. PubMed DOI
Tyystjärvi E. Photoinhibition of Photosystem II. Int. Rev. Cell Mol. Biol. 2013;300:243–303. doi: 10.1016/b978-0-12-405210-9.00007-2. PubMed DOI
Keren N., Krieger-Liszkay A. Photoinhibition: Molecular mechanisms and physiological significance. Physiol. Plant. 2011;142:1–5. doi: 10.1111/j.1399-3054.2011.01467.x. PubMed DOI
Oguchi R., Hikosaka K., Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ. 2003;26:505–512. doi: 10.1046/j.1365-3040.2003.00981.x. DOI
Takahashi S., Badger M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI
Campbell D.A., Tyystjarvi E. Parameterization of photosystem II photoinactivation and repair. Biochim. Biophys. Acta. 2012;1817:258–265. doi: 10.1016/j.bbabio.2011.04.010. PubMed DOI
Vass I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta. 2012;1817:209–217. doi: 10.1016/j.bbabio.2011.04.014. PubMed DOI
Komenda J., Sobotka R., Nixon P.J. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 2012;15:245–251. doi: 10.1016/j.pbi.2012.01.017. PubMed DOI
Prasil O., Adir N., Ohad I. Dynamics of photosystem II: Mechanism of photoinhibition and recovery processes. Top. Photosynth. 1992;11:295–348.
Komenda J., Tichy M., Prásil O., Knoppová J., Kuviková S., de Vries R., Nixon P.J. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell. 2007;19:2839–2854. doi: 10.1105/tpc.107.053868. PubMed DOI PMC
Komenda J. Role of two forms of the D1 protein in the recovery from photoinhibition of photosystem II in the cyanobacterium Synechococcus PCC 7942. Biochim. Biophys. Acta. 2000;1457:243–252. doi: 10.1016/S0005-2728(00)00105-5. PubMed DOI
Stoitchkova K., Zsiros O., Jávorfi T., Páli T., Andreeva A., Gombos Z., Garab G. Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007;1767:750–756. doi: 10.1016/j.bbabio.2007.03.002. PubMed DOI
Kaňa R., Prášil O., Komárek O., Papageorgiou G., Govindjee Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942) Biochim. Biophys. Acta. 2009;1787:1170–1178. doi: 10.1016/j.bbabio.2009.04.013. PubMed DOI
Campbell D., Hurry V., Clarke A.K., Gustafsson P., Oquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. MMBR. 1998;62:667–683. doi: 10.1128/MMBR.62.3.667-683.1998. PubMed DOI PMC
Cser K., Vass I. Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochim. Biophys. Acta. 2007;1767:233–243. doi: 10.1016/j.bbabio.2007.01.022. PubMed DOI
Stadnichuk I.N., Yanyushin M.F., Bernát G., Zlenko D.V., Krasilnikov P.M., Lukashev E.P., Maksimov E.G., Paschenko V.Z. Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J. Photochem. Photobiol. B Biol. 2013;125:137–145. doi: 10.1016/j.jphotobiol.2013.05.014. PubMed DOI
Kirilovsky D., Kerfeld C.A. The Orange Carotenoid Protein: A blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI
Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 1987;69:561–568. doi: 10.1111/j.1399-3054.1987.tb09240.x. DOI
Daddy S., Zhan J., Jantaro S., He C., He Q., Wang Q. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803. Sci. Rep. 2015;5:9480. doi: 10.1038/srep09480. PubMed DOI PMC
Kuthanová Trsková E., Belgio E., Yeates A.M., Sobotka R., Ruban A.V., Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J. Exp. Bot. 2018;69:4483–4493. doi: 10.1093/jxb/ery240. PubMed DOI PMC
Bilger W., Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990;25:173–185. doi: 10.1007/BF00033159. PubMed DOI
Cogdell R. The function of pigments in chloroplasts. Plant Pigment. 1988:183–230.
Domonkos I., Kis M., Gombos Z., Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid. Res. 2013;52:539–561. doi: 10.1016/j.plipres.2013.07.001. PubMed DOI
Ruban A.V., Johnson M.P. Xanthophylls as modulators of membrane protein function. Arch. Biochem. Biophys. 2010;504:78–85. doi: 10.1016/j.abb.2010.06.034. PubMed DOI
Kaňa R., Kotabová E., Kopečná J., Trsková E., Belgio E., Sobotka R., Ruban A.V. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antennae of Chromera velia. FEBS Lett. 2016;590:1076–1085. doi: 10.1002/1873-3468.12130. PubMed DOI
Hirschberg J., Chamovitz D. Carotenoids in Cyanobacteria. In: Bryant D.A., editor. The Molecular Biology of Cyanobacteria. Springer; Dordrecht, The Netherlands: 1994. pp. 559–579. DOI
Zakar T., Herman E., Vajravel S., Kovacs L., Knoppová J., Komenda J., Domonkos I., Kis M., Gombos Z., Laczko-Dobos H. Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017;1858:337–350. doi: 10.1016/j.bbabio.2017.02.002. PubMed DOI PMC
Tóth T.N., Chukhutsina V., Domonkos I., Knoppová J., Komenda J., Kis M., Lénárt Z., Garab G., Kovács L., Gombos Z., et al. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochim. Biophys. Acta (BBA)-Bioenerg. 2015;1847:1153–1165. doi: 10.1016/j.bbabio.2015.05.020. PubMed DOI
Williams J.G.K. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 1988;167:766–778.
Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00648. PubMed DOI PMC
Strašková A., Knoppová J., Komenda J. Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap®. Photosynthetica. 2018;56:300–305. doi: 10.1007/s11099-018-0771-2. DOI
Wittig I., Karas M., Schägger H. High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes. Mol. &Amp; Cell. Proteom. 2007;6:1215–1225. doi: 10.1074/mcp.M700076-MCP200. PubMed DOI
Kaňa R., Kotabová E., Komárek O., Šedivá B., Papageorgiou G.C., Govindjee, Prášil O. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim. Biophys. Acta. 2012;1817:1237–1247. doi: 10.1016/j.bbabio.2012.02.024. PubMed DOI
Kaňa R. Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae. Photosynthetica. 2018;56:132–138. doi: 10.1007/s11099-018-0780-1. DOI
Ritchie R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006;89:27–41. doi: 10.1007/s11120-006-9065-9. PubMed DOI
Pazderník M., Mareš J., Pilný J., Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 2019;294:11131–11143. doi: 10.1074/jbc.RA119.008434. PubMed DOI PMC
Sutton S. Measurement of microbial cells by optical density. J. Valid. Technol. 2011;17:46–49.
Steinbach G., Schubert F., Kana R. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp PCC 7120 cells. J. Photochem. Photobiol. B-Biol. 2015;152:395–399. doi: 10.1016/j.jphotobiol.2015.10.003. PubMed DOI
Aro E.M., McCaffery S., Anderson J.M. Photoinhibition and D1 protein-degradation in peas acclimated to different growth irradiances. Plant Physiol. 1993;103:835–843. doi: 10.1104/pp.103.3.835. PubMed DOI PMC
Martins B.M.C., Tooke A.K., Thomas P., Locke J.C.W. Cell size control driven by the circadian clock and environment in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2018;115:E11415–E11424. doi: 10.1073/pnas.1811309115. PubMed DOI PMC
van Alphen P., Hellingwerf K.J. Sustained Circadian Rhythms in Continuous Light in Synechocystis sp. PCC6803 Growing in a Well-Controlled Photobioreactor. PLoS ONE. 2015;10:e0127715. doi: 10.1371/journal.pone.0127715. PubMed DOI PMC
Demmig-Adams B., Garab G., Adams W.W., III, Govindjee . In: Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Demmig-Adams B., Garab G., Adams W. III, editors. Volume XXXVIII. Springer; Dordrecht, The Netherlands: 2014. p. 649. DOI
Boulay C., Wilson A., D’Haene S., Kirilovsky D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2010;107:11620–11625. doi: 10.1073/pnas.1002912107. PubMed DOI PMC
Gwizdala M., Wilson A., Kirilovsky D. In Vitro Reconstitution of the Cyanobacterial Photoprotective Mechanism Mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. Plant Cell. 2011;23:2631–2643. doi: 10.1105/tpc.111.086884. PubMed DOI PMC
Kopecna J., Komenda J., Bucinska L., Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012;160:2239–2250. doi: 10.1104/pp.112.207274. PubMed DOI PMC
Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3:147–151. doi: 10.1016/S1360-1385(98)01200-X. DOI
Kaňa R., Steinbach G., Sobotka R., Vámosi G., Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life. 2021;11:15. doi: 10.3390/life11010015. PubMed DOI PMC
Izuhara T., Kaihatsu I., Jimbo H., Takaichi S., Nishiyama Y. Elevated Levels of Specific Carotenoids During Acclimation to Strong Light Protect the Repair of Photosystem II in Synechocystis sp. PCC 6803. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.01030. PubMed DOI PMC
Rast A., Schaffer M., Albert S., Wan W., Pfeffer S., Beck F., Plitzko J.M., Nickelsen J., Engel B.D. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants. 2019;5:436–446. doi: 10.1038/s41477-019-0399-7. PubMed DOI
Vajravel S., Kis M., Kłodawska K., Laczko-Dobos H., Malec P., Kovács L., Gombos Z., Toth T.N. Zeaxanthin and echinenone modify the structure of photosystem I trimer in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017;1858:510–518. doi: 10.1016/j.bbabio.2017.05.001. PubMed DOI
Gruszecki W.I., Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 2005;1740:108–115. doi: 10.1016/j.bbadis.2004.11.015. PubMed DOI
Mohamed H.E., van de Meene A.M.L., Roberson R.W., Vermaas W.F.J. Myxoxanthophyll Is Required for Normal Cell Wall Structure and Thylakoid Organization in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J. Bacteriol. 2005;187:6883–6892. doi: 10.1128/JB.187.20.6883-6892.2005. PubMed DOI PMC
Steiger S., Schäfer L., Sandmann G. High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J. Photochem. Photobiol. B Biol. 1999;52:14–18. doi: 10.1016/S1011-1344(99)00094-9. DOI
Kaňa R. Mobility of photosynthetic proteins. Photosynth. Res. 2013;116:465–479. doi: 10.1007/s11120-013-9898-y. PubMed DOI
Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC
Lohr M., Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA. 1999;96:8784–8789. doi: 10.1073/pnas.96.15.8784. PubMed DOI PMC
Böhme K., Wilhelm C., Goss R. Light regulation of carotenoid biosynthesis in the prasinophycean alga Mantoniella squamata. Photochem. Photobiol. Sci. 2002;1:619–628. doi: 10.1039/B204965C. PubMed DOI