• This record comes from PubMed

Coronaviral RNA-methyltransferases: function, structure and inhibition

. 2022 Jan 25 ; 50 (2) : 635-650.

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.

See more in PubMed

Schmidt A., Wolff M.H., Weber O.F.. Coronaviruses with Special Emphasis on First Insights Concerning SARS. 2005; Basel, Boston: Birkhäuser Verlag.

Pene F., Merlat A., Vabret A., Rozenberg F., Buzyn A., Dreyfus F., Cariou A., Freymuth F., Lebon P.. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 2003; 37:929–932. PubMed PMC

Hand J., Rose E.B., Salinas A., Lu X., Sakthivel S.K., Schneider E., Watson J.T.. Severe respiratory illness outbreak associated with human coronavirus NL63 in a long-term care facility. Emerg. Infect. Dis. 2018; 24:1964–1966. PubMed PMC

Shuman S. RNA capping: progress and prospects. RNA. 2015; 21:735–737. PubMed PMC

Trotman J.B., Schoenberg D.R.. A recap of RNA recapping. Wiley Interdiscip. Rev. RNA. 2019; 10:e1504. PubMed PMC

Motorin Y., Helm M.. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA. 2011; 2:611–631. PubMed

Snijder E.J., Decroly E., Ziebuhr J.. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 2016; 96:59–126. PubMed PMC

Lai M.M., Stohlman S.A.. Comparative analysis of RNA genomes of mouse hepatitis viruses. J. Virol. 1981; 38:661–670. PubMed PMC

van Vliet A.L., Smits S.L., Rottier P.J., de Groot R.J.. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J. 2002; 21:6571–6580. PubMed PMC

Horova V., Landova B., Hodek J., Chalupsky K., Krafcikova P., Chalupska D., Duchoslav V., Weber J., Boura E., Klima M.. Localization of SARS-CoV-2 capping enzymes revealed by an antibody against the nsp10 subunit. Viruses. 2021; 13:1487. PubMed PMC

Ivanov K.A., Thiel V., Dobbe J.C., van der Meer Y., Snijder E.J., Ziebuhr J.. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 2004; 78:5619–5632. PubMed PMC

Yan L., Ge J., Zheng L., Zhang Y., Gao Y., Wang T., Huang Y., Yang Y., Gao S., Li M.et al. .. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell. 2021; 184:184–193. PubMed PMC

Jin X., Chen Y., Sun Y., Zeng C., Wang Y., Tao J., Wu A., Yu X., Zhang Z., Tian J.et al. .. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res. 2013; 176:45–52. PubMed PMC

Decroly E., Imbert I., Coutard B., Bouvet M., Selisko B., Alvarez K., Gorbalenya A.E., Snijder E.J., Canard B.. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J. Virol. 2008; 82:8071–8084. PubMed PMC

Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E.. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010; 6:e1000863. PubMed PMC

Benoni R., Krafcikova P., Baranowski M.R., Kowalska J., Boura E., Cahová H.. Substrate specificity of SARS-CoV-2 nsp10-nsp16 methyltransferase. Viruses. 2021; 13:1722. PubMed PMC

Yan L., Yang Y., Li M., Zhang Y., Zheng L., Ge J., Huang Y.C., Liu Z., Wang T., Gao S.et al. .. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell. 2021; 184:3474–3485. PubMed PMC

Perry J.K., Appleby T.C., Bilello J.P., Feng J.Y., Schmitz U., Campbell E.A.. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. J. Biol. Chem. 2021; 297:101218. PubMed PMC

Wiedermannova J., Julius C., Yuzenkova Y.. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. R. Soc. Open Sci. 2021; 8:201979. PubMed PMC

Hudecek O., Benoni R., Reyes-Gutierrez P.E., Culka M., Sanderova H., Hubalek M., Rulisek L., Cvacka J., Krasny L., Cahova H.. Dinucleoside polyphosphates act as 5'-RNA caps in bacteria. Nat. Commun. 2020; 11:1052. PubMed PMC

Wang J., Alvin Chew B.L., Lai Y., Dong H., Xu L., Balamkundu S., Cai W.M., Cui L., Liu C.F., Fu X.Y.et al. .. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019; 47:e130. PubMed PMC

Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., Hannesschlager N., Schlee M., Rothenfusser S., Barchet W.et al. .. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 2010; 11:63–69. PubMed

Kell A.M., Gale M. Jr. RIG-I in RNA virus recognition. Virology. 2015; 479-480:110–121. PubMed PMC

Fensterl V., Sen G.C.. Interferon-induced ifit proteins: their role in viral pathogenesis. J. Virol. 2015; 89:2462–2468. PubMed PMC

Mears H.V., Sweeney T.R.. Better together: the role of IFIT protein-protein interactions in the antiviral response. J. Gen. Virol. 2018; 99:1463–1477. PubMed

Zust R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., Szretter K.J., Baker S.C., Barchet W., Diamond M.S.et al. .. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor mda5. Nat. Immunol. 2011; 12:137–143. PubMed PMC

Jan E., Mohr I., Walsh D.. A Cap-to-Tail guide to mRNA translation strategies in virus-infected cells. Annu Rev Virol. 2016; 3:283–307. PubMed

Decroly E., Ferron F., Lescar J., Canard B.. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 2011; 10:51–65. PubMed PMC

De Vlugt C., Sikora D., Pelchat M.. Insight into influenza: a virus cap-snatching. Viruses. 2018; 10:641. PubMed PMC

Ghosh A., Lima C.D.. Enzymology of RNA cap synthesis. Wiley Interdiscip. Rev. RNA. 2010; 1:152–172. PubMed PMC

Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., Guo D.. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. PNAS. 2009; 106:3484–3489. PubMed PMC

Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., Rao Z.. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. PNAS. 2015; 112:9436–9441. PubMed PMC

Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E.. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003; 331:991–1004. PubMed PMC

von Grotthuss M., Wyrwicz L.S., Rychlewski L.. mRNA cap-1 methyltransferase in the SARS genome. Cell. 2003; 113:701–702. PubMed PMC

Zeng C., Wu A., Wang Y., Xu S., Tang Y., Jin X., Wang S., Qin L., Sun Y., Fan C.et al. .. Identification and characterization of a ribose 2'-O-methyltransferase encoded by the ronivirus branch of nidovirales. J. Virol. 2016; 90:6675–6685. PubMed PMC

Chen Y., Su C.Y., Ke M., Jin X., Xu L.R., Zhang Z., Wu A.D., Sun Y., Yang Z.N., Tien P.et al. .. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2 '-O-Methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011; 7:e1002294. PubMed PMC

Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., Bricogne G.et al. .. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011; 7:e1002059. PubMed PMC

Krafcikova P., Silhan J., Nencka R., Boura E.. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020; 11:3717. PubMed PMC

Viswanathan T., Arya S., Chan S.H., Qi S., Dai N., Misra A., Park J.G., Oladunni F., Kovalskyy D., Hromas R.A.et al. .. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 2020; 11:3718. PubMed PMC

Rosas-Lemus M., Minasov G., Shuvalova L., Inniss N.L., Kiryukhina O., Brunzelle J., Satchell K.J.F.. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci. Signal. 2020; 13:651. PubMed PMC

Dostalik P., Krafcikova P., Silhan J., Kozic J., Chalupska D., Chalupsky K., Boura E.. Structural analysis of the OC43 coronavirus 2'-O-RNA methyltransferase. J. Virol. 2021; 95:e00463-21. PubMed PMC

Wilamowski M., Sherrell D.A., Minasov G., Kim Y., Shuvalova L., Lavens A., Chard R., Maltseva N., Jedrzejczak R., Rosas-Lemus M.et al. .. 2021) 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. PNAS. 118:e2100170118. PubMed PMC

Viswanathan T., Misra A., Chan S.H., Qi S., Dai N., Arya S., Martinez-Sobrido L., Gupta Y.K.. A metal ion orients SARS-CoV-2 mRNA to ensure accurate 2'-O methylation of its first nucleotide. Nat. Commun. 2021; 12:3287. PubMed PMC

Rao S.T., Rossmann M.G.. Comparison of super-secondary structures in proteins. J. Mol. Biol. 1973; 76:241–256. PubMed

Vithani N., Ward M.D., Zimmerman M.I., Novak B., Borowsky J.H., Singh S., Bowman G.R.. SARS-CoV-2 nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys. J. 2021; 120:2880–2889. PubMed PMC

Hercik K., Brynda J., Nencka R., Boura E.. Structural basis of zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 2017; 162:2091–2096. PubMed

Ferron F., Subissi L., Silveira De Morais A.T., Le N.T.T., Sevajol M., Gluais L., Decroly E., Vonrhein C., Bricogne G., Canard B.et al. .. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. PNAS. 2018; 115:E162–E171. PubMed PMC

Rozycki B., Boura E.. Large, dynamic, multi-protein complexes: a challenge for structural biology. J. Phys. Condensed Matter. 2014; 26:463103. PubMed

Lin S., Chen H., Chen Z.M., Yang F.L., Ye F., Zheng Y., Yang J., Lin X., Sun H.L., Wang L.L.et al. .. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res. 2021; 49:5382–5392. PubMed PMC

Liu C., Shi W., Becker S.T., Schatz D.G., Liu B., Yang Y.. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science. 2021; 373:1142–1146. PubMed PMC

Robson F., Khan K.S., Le T.K., Paris C., Demirbag S., Barfuss P., Rocchi P., Ng W.L.. Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol. Cell. 2020; 79:710–727. PubMed PMC

Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M.. Mechanism of inhibition of ebola virus RNA-Dependent RNA polymerase by remdesivir. Viruses. 2019; 11:326. PubMed PMC

Gordon C.J., Tchesnokov E.P., Woolner E., Perry J.K., Feng J.Y., Porter D.P., Gotte M.. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020; 295:6785–6797. PubMed PMC

Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M.. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle east respiratory syndrome coronavirus. J. Biol. Chem. 2020; 295:4773–4779. PubMed PMC

Konkolova E., Dejmek M., Hrebabecky H., Sala M., Boserle J., Nencka R., Boura E.. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res. 2020; 182:104899. PubMed PMC

Smith E.C., Blanc H., Surdel M.C., Vignuzzi M., Denison M.R.. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 2013; 9:e1003565. PubMed PMC

Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R.et al. .. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018; 9:e00221-18. PubMed PMC

Eckerle L.D., Brockway S.M., Sperry S.M., Lu X., Denison M.R.. Effects of mutagenesis of murine hepatitis virus nsp1 and nsp14 on replication in culture. Adv. Exp. Med. Biol. 2006; 581:55–60. PubMed PMC

Eckerle L.D., Becker M.M., Halpin R.A., Li K., Venter E., Lu X., Scherbakova S., Graham R.L., Baric R.S., Stockwell T.B.et al. .. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 2010; 6:e1000896. PubMed PMC

Wang X., Sacramento C.Q., Jockusch S., Chaves O.A., Tao C., Fintelman-Rodrigues N., Chien M., Temerozo J.R., Li X., Kumar S.. Combination of antiviral drugs to inhibit SARS-CoV-2 polymerase and exonuclease as potential COVID-19 therapeutics. 2021; bioRxiv doi:21 July 2021, preprint: not peer reviewed10.1101/2021.07.21.453274. PubMed DOI PMC

Bouvet M., Imbert I., Subissi L., Gluais L., Canard B., Decroly E.. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. PNAS. 2012; 109:9372–9377. PubMed PMC

Finkel Y., Mizrahi O., Nachshon A., Weingarten-Gabbay S., Morgenstern D., Yahalom-Ronen Y., Tamir H., Achdout H., Stein D., Israeli O.et al. .. The coding capacity of SARS-CoV-2. Nature. 2021; 589:125–130. PubMed

Chen Y., Tao J., Sun Y., Wu A., Su C., Gao G., Cai H., Qiu S., Wu Y., Ahola T.et al. .. Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase. J. Virol. 2013; 87:6296–6305. PubMed PMC

Konkolova E., Klima M., Nencka R., Boura E.. Structural analysis of the putative SARS-CoV-2 primase complex. J. Struct. Biol. 2020; 211:107548. PubMed PMC

Dinesh D.C., Chalupska D., Silhan J., Koutna E., Nencka R., Veverka V., Boura E.. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog. 2020; 16:e1009100. PubMed PMC

Kokic G., Hillen H.S., Tegunov D., Dienemann C., Seitz F., Schmitzova J., Farnung L., Siewert A., Hobartner C., Cramer P.. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021; 12:279. PubMed PMC

Naydenova K., Muir K.W., Wu L.F., Zhang Z., Coscia F., Peet M.J., Castro-Hartmann P., Qian P., Sader K., Dent K.et al. .. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. PNAS. 2021; 118:e2021946118. PubMed PMC

Jochheim F.A., Tegunov D., Hillen H.S., Schmitzova J., Kokic G., Dienemann C., Cramer P.. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol. 2021; 4:999. PubMed PMC

Chen J., Malone B., Llewellyn E., Grasso M., Shelton P.M.M., Olinares P.D.B., Maruthi K., Eng E.T., Vatandaslar H., Chait B.T.et al. .. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell. 2020; 182:1560–1573. PubMed PMC

Frazier M.N., Dillard L.B., Krahn J.M., Perera L., Williams J.G., Wilson I.M., Stewart Z.D., Pillon M.C., Deterding L.J., Borgnia M.J.et al. .. Characterization of SARS2 nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res. 2021; 49:10136–10149. PubMed PMC

Kirchdoerfer R.N., Ward A.B.. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 2019; 10:2342. PubMed PMC

Slanina H., Madhugiri R., Bylapudi G., Schultheiss K., Karl N., Gulyaeva A., Gorbalenya A.E., Linne U., Ziebuhr J.. Coronavirus replication-transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the niran-rdrp subunit. PNAS. 2021; 118:e2022310118. PubMed PMC

Wang Y., Sun Y., Wu A., Xu S., Pan R., Zeng C., Jin X., Ge X., Shi Z., Ahola T.et al. .. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-Derived peptide in vitro and in vivo to reduce replication and pathogenesis. J. Virol. 2015; 89:8416–8427. PubMed PMC

Tong T.R. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect. Disord. Drug Targets. 2009; 9:223–245. PubMed

Wang Y., Hu W., Yuan Y.. Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J. Med. Chem. 2018; 61:9429–9441. PubMed

Hamil R.L., Hoehn M.M.. A9145, a new adenine-containing antifungal antibiotic. I. Discovery and isolation. J. Antibiot. (Tokyo). 1973; 26:463–465. PubMed

Pugh C.S., Borchardt R.T., Stone H.O.. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2'-)-methyltransferase, and viral multiplication. J. Biol. Chem. 1978; 253:4075–4077. PubMed

Vedel M., Lawrence F., Robert-Gero M., Lederer E.. The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by rous sarcoma virus. Biochem. Biophys. Res. Commun. 1978; 85:371–376. PubMed

Aouadi W., Blanjoie A., Vasseur J.J., Debart F., Canard B., Decroly E.. Binding of the methyl donor S-adenosyl-l-methionine to middle east respiratory syndrome coronavirus 2'-O-Methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J. Virol. 2017; 91:e02217-16. PubMed PMC

Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M.et al. .. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021; 7:2214–2220. PubMed

Devkota K., Schapira M., Perveen S., Khalili Yazdi A., Li F., Chau I., Ghiabi P., Hajian T., Loppnau P., Bolotokova A.et al. .. Probing the SAM binding site of SARS-CoV-2 nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS Discov. 2021; 26:1200–1211. PubMed PMC

Khalili Yazdi A., Li F., Devkota K., Perveen S., Ghiabi P., Hajian T., Bolotokova A., Vedadi M.. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. SLAS Discov. 2021; 26:757–765. PubMed PMC

Perveen S., Khalili Yazdi A., Devkota K., Li F., Ghiabi P., Hajian T., Loppnau P., Bolotokova A., Vedadi M.. A high-throughput RNA displacement assay for screening SARS-CoV-2 nsp10-nsp16 complex toward developing therapeutics for COVID-19. SLAS Discov. 2021; 26:620–627. PubMed PMC

Bobileva O., Bobrovs R., Kanepe I., Patetko L., Kalnins G., Sisovs M., Bula A.L., Gri Nberga S., Boroduskis M.R., Ramata-Stunda A.et al. .. Potent SARS-CoV-2 mRNA cap methyltransferase inhibitors by bioisosteric replacement of methionine in SAM cosubstrate. ACS Med. Chem. Lett. 2021; 12:1102–1107. PubMed PMC

Ahmed-Belkacem R., Sutto-Ortiz P., Guiraud M., Canard B., Vasseur J.J., Decroly E., Debart F.. Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase. Eur. J. Med. Chem. 2020; 201:112557. PubMed PMC

Li J.J., Wei H., Zhou M.M.. Structure-Guided design of a methyl donor cofactor that controls a viral histone H3 lysine 27 methyltransferase activity. J. Med. Chem. 2011; 54:7734–7738. PubMed PMC

Borchardt R.T., Wu Y.S.. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 3. Modifications of the sugar portion of S-adenosylhomocysteine. J. Med. Chem. 1975; 18:300–304. PubMed

Hickey S.F., Hammond M.C.. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs. Chem. Biol. 2014; 21:345–356. PubMed PMC

Ke M., Chen Y., Wu A., Sun Y., Su C., Wu H., Jin X., Tao J., Wang Y., Ma X.et al. .. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res. 2012; 167:322–328. PubMed PMC

Aouadi W., Eydoux C., Coutard B., Martin B., Debart F., Vasseur J.J., Contreras J.M., Morice C., Querat G., Jung M.L.et al. .. Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antiviral Res. 2017; 144:330–339. PubMed PMC

Kasprzyk R., Spiewla T.J., Smietanski M., Golojuch S., Vangeel L., De Jonghe S., Jochmans D., Neyts J., Kowalska J., Jemielity J.. Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Res. 2021; 193:105142. PubMed PMC

Pearson L.A., Green C.J., Lin D., Petit A.P., Gray D.W., Cowling V.H., Fordyce E.A.F.. Development of a high-throughput screening assay to identify inhibitors of the SARS-CoV-2 guanine-n7-methyltransferase using rapidfire mass spectrometry. Slas Discov. 2021; 26:749–756. PubMed PMC

Cihlova B., Huskova A., Boserle J., Nencka R., Boura E., Silhan J.. High-Throughput fluorescent assay for inhibitor screening of proteases from RNA viruses. Molecules. 2021; 26:3792. PubMed PMC

Iketani S., Forouhar F., Liu H., Hong S.J., Lin F.Y., Nair M.S., Zask A., Huang Y., Xing L., Stockwell B.R.et al. .. Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nat. Commun. 2021; 12:2016. PubMed PMC

Coelho C., Gallo G., Campos C.B., Hardy L., Wurtele M.. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One. 2020; 15:e0240079. PubMed PMC

Ma C.L., Sacco M.D., Xia Z.L., Lambrinidis G., Townsend J.A., Hu Y.M., Meng X.Z., Szeto T., Ba M., Zhang X.J.et al. .. Discovery of SARS-CoV-2 Papain-like protease inhibitors through a combination of high-throughput screening and a flipgfp-Based reporter assay. ACS Central Sci. 2021; 7:1245–1260. PubMed PMC

Scholle M.D., Liu C., Deval J., Gurard-Levin Z.A.. Label-Free screening of SARS-CoV-2 NSP14 exonuclease activity using SAMDI mass spectrometry. Slas Discov. 2021; 26:766–774. PubMed PMC

White M.A., Lin W., Cheng X.. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 nsp13 helicase. J. Phys. Chem. Lett. 2020; 11:9144–9151. PubMed PMC

Kim Y., Wower J., Maltseva N., Chang C., Jedrzejczak R., Wilamowski M., Kang S., Nicolaescu V., Randall G., Michalska K.et al. .. Tipiracil binds to uridine site and inhibits nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun Biol. 2021; 4:193. PubMed PMC

Schafer A., Martinez D.R., Won J.J., Moreira F.R., Brown A.J., Gully K.L., Kalla R., Chun K., Pont Du, Babusis D. Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice. 2021; bioRxiv doi:17 September 2021, preprint: not peer reviewed10.1101/2021.09.13.460111. DOI

Cox R.M., Wolf J.D., Lieber C.M., Sourimant J., Lin M.J., Babusis D., DuPont V., Chan J., Barrett K.T., Lye D.et al. .. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat. Commun. 2021; 12:6415. PubMed PMC

Xie Y., Yin W., Zhang Y., Shang W., Wang Z., Luan X., Tian G., Aisa H.A., Xu Y., Xiao G.et al. .. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res. 2021; 31:1212–1214. PubMed PMC

Painter W.P., Holman W., Bush J.A., Almazedi F., Malik H., Eraut N., Morin M.J., Szewczyk L.J., Painter G.R.. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother. 2021; 65:e02428-20. PubMed PMC

Good S.S., Westover J., Jung K.H., Zhou X.J., Moussa A., La Colla P., Collu G., Canard B., Sommadossi J.P.. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother. 2021; 65:e02479-20. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases

. 2025 Feb 20 ; 170 (3) : 61. [epub] 20250220

The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery

. 2025 Jan ; 301 (1) : 108079. [epub] 20241214

Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39

. 2024 Dec ; 10 () : 100109. [epub] 20240729

Meeting report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research

. 2024 Dec ; 232 () : 106037. [epub] 20241113

Discovery of highly potent SARS-CoV-2 nsp14 methyltransferase inhibitors based on adenosine 5'-carboxamides

. 2024 Aug 01 ; 15 (10) : 3469-76. [epub] 20240801

Rational Design of Highly Potent SARS-CoV-2 nsp14 Methyltransferase Inhibitors

. 2023 Aug 01 ; 8 (30) : 27410-27418. [epub] 20230721

Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport

. 2023 Jul 31 ; 12 (15) : . [epub] 20230731

Structure of monkeypox virus poxin: implications for drug design

. 2023 Jun 28 ; 168 (7) : 192. [epub] 20230628

Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase

. 2023 Apr 20 ; 14 (1) : 2259. [epub] 20230420

Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16

. 2022 Sep ; 31 (9) : e4395.

A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases

. 2022 Mar 15 ; 27 (6) : . [epub] 20220315

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...