Coronaviral RNA-methyltransferases: function, structure and inhibition
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35018474
PubMed Central
PMC8789044
DOI
10.1093/nar/gkab1279
PII: 6501241
Knihovny.cz E-resources
- MeSH
- Amino Acids chemistry MeSH
- Coronavirus drug effects enzymology genetics MeSH
- Humans MeSH
- Methyltransferases antagonists & inhibitors chemistry metabolism MeSH
- Methylation MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Drug Discovery MeSH
- RNA, Viral chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids MeSH
- Methyltransferases MeSH
- RNA, Viral MeSH
Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.
See more in PubMed
Schmidt A., Wolff M.H., Weber O.F.. Coronaviruses with Special Emphasis on First Insights Concerning SARS. 2005; Basel, Boston: Birkhäuser Verlag.
Pene F., Merlat A., Vabret A., Rozenberg F., Buzyn A., Dreyfus F., Cariou A., Freymuth F., Lebon P.. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 2003; 37:929–932. PubMed PMC
Hand J., Rose E.B., Salinas A., Lu X., Sakthivel S.K., Schneider E., Watson J.T.. Severe respiratory illness outbreak associated with human coronavirus NL63 in a long-term care facility. Emerg. Infect. Dis. 2018; 24:1964–1966. PubMed PMC
Shuman S. RNA capping: progress and prospects. RNA. 2015; 21:735–737. PubMed PMC
Trotman J.B., Schoenberg D.R.. A recap of RNA recapping. Wiley Interdiscip. Rev. RNA. 2019; 10:e1504. PubMed PMC
Motorin Y., Helm M.. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA. 2011; 2:611–631. PubMed
Snijder E.J., Decroly E., Ziebuhr J.. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 2016; 96:59–126. PubMed PMC
Lai M.M., Stohlman S.A.. Comparative analysis of RNA genomes of mouse hepatitis viruses. J. Virol. 1981; 38:661–670. PubMed PMC
van Vliet A.L., Smits S.L., Rottier P.J., de Groot R.J.. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J. 2002; 21:6571–6580. PubMed PMC
Horova V., Landova B., Hodek J., Chalupsky K., Krafcikova P., Chalupska D., Duchoslav V., Weber J., Boura E., Klima M.. Localization of SARS-CoV-2 capping enzymes revealed by an antibody against the nsp10 subunit. Viruses. 2021; 13:1487. PubMed PMC
Ivanov K.A., Thiel V., Dobbe J.C., van der Meer Y., Snijder E.J., Ziebuhr J.. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 2004; 78:5619–5632. PubMed PMC
Yan L., Ge J., Zheng L., Zhang Y., Gao Y., Wang T., Huang Y., Yang Y., Gao S., Li M.et al. .. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell. 2021; 184:184–193. PubMed PMC
Jin X., Chen Y., Sun Y., Zeng C., Wang Y., Tao J., Wu A., Yu X., Zhang Z., Tian J.et al. .. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res. 2013; 176:45–52. PubMed PMC
Decroly E., Imbert I., Coutard B., Bouvet M., Selisko B., Alvarez K., Gorbalenya A.E., Snijder E.J., Canard B.. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J. Virol. 2008; 82:8071–8084. PubMed PMC
Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E.. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010; 6:e1000863. PubMed PMC
Benoni R., Krafcikova P., Baranowski M.R., Kowalska J., Boura E., Cahová H.. Substrate specificity of SARS-CoV-2 nsp10-nsp16 methyltransferase. Viruses. 2021; 13:1722. PubMed PMC
Yan L., Yang Y., Li M., Zhang Y., Zheng L., Ge J., Huang Y.C., Liu Z., Wang T., Gao S.et al. .. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell. 2021; 184:3474–3485. PubMed PMC
Perry J.K., Appleby T.C., Bilello J.P., Feng J.Y., Schmitz U., Campbell E.A.. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. J. Biol. Chem. 2021; 297:101218. PubMed PMC
Wiedermannova J., Julius C., Yuzenkova Y.. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. R. Soc. Open Sci. 2021; 8:201979. PubMed PMC
Hudecek O., Benoni R., Reyes-Gutierrez P.E., Culka M., Sanderova H., Hubalek M., Rulisek L., Cvacka J., Krasny L., Cahova H.. Dinucleoside polyphosphates act as 5'-RNA caps in bacteria. Nat. Commun. 2020; 11:1052. PubMed PMC
Wang J., Alvin Chew B.L., Lai Y., Dong H., Xu L., Balamkundu S., Cai W.M., Cui L., Liu C.F., Fu X.Y.et al. .. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019; 47:e130. PubMed PMC
Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., Hannesschlager N., Schlee M., Rothenfusser S., Barchet W.et al. .. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol. 2010; 11:63–69. PubMed
Kell A.M., Gale M. Jr. RIG-I in RNA virus recognition. Virology. 2015; 479-480:110–121. PubMed PMC
Fensterl V., Sen G.C.. Interferon-induced ifit proteins: their role in viral pathogenesis. J. Virol. 2015; 89:2462–2468. PubMed PMC
Mears H.V., Sweeney T.R.. Better together: the role of IFIT protein-protein interactions in the antiviral response. J. Gen. Virol. 2018; 99:1463–1477. PubMed
Zust R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., Szretter K.J., Baker S.C., Barchet W., Diamond M.S.et al. .. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor mda5. Nat. Immunol. 2011; 12:137–143. PubMed PMC
Jan E., Mohr I., Walsh D.. A Cap-to-Tail guide to mRNA translation strategies in virus-infected cells. Annu Rev Virol. 2016; 3:283–307. PubMed
Decroly E., Ferron F., Lescar J., Canard B.. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 2011; 10:51–65. PubMed PMC
De Vlugt C., Sikora D., Pelchat M.. Insight into influenza: a virus cap-snatching. Viruses. 2018; 10:641. PubMed PMC
Ghosh A., Lima C.D.. Enzymology of RNA cap synthesis. Wiley Interdiscip. Rev. RNA. 2010; 1:152–172. PubMed PMC
Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., Guo D.. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. PNAS. 2009; 106:3484–3489. PubMed PMC
Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., Rao Z.. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. PNAS. 2015; 112:9436–9441. PubMed PMC
Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E.. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003; 331:991–1004. PubMed PMC
von Grotthuss M., Wyrwicz L.S., Rychlewski L.. mRNA cap-1 methyltransferase in the SARS genome. Cell. 2003; 113:701–702. PubMed PMC
Zeng C., Wu A., Wang Y., Xu S., Tang Y., Jin X., Wang S., Qin L., Sun Y., Fan C.et al. .. Identification and characterization of a ribose 2'-O-methyltransferase encoded by the ronivirus branch of nidovirales. J. Virol. 2016; 90:6675–6685. PubMed PMC
Chen Y., Su C.Y., Ke M., Jin X., Xu L.R., Zhang Z., Wu A.D., Sun Y., Yang Z.N., Tien P.et al. .. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2 '-O-Methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011; 7:e1002294. PubMed PMC
Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., Bricogne G.et al. .. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011; 7:e1002059. PubMed PMC
Krafcikova P., Silhan J., Nencka R., Boura E.. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020; 11:3717. PubMed PMC
Viswanathan T., Arya S., Chan S.H., Qi S., Dai N., Misra A., Park J.G., Oladunni F., Kovalskyy D., Hromas R.A.et al. .. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 2020; 11:3718. PubMed PMC
Rosas-Lemus M., Minasov G., Shuvalova L., Inniss N.L., Kiryukhina O., Brunzelle J., Satchell K.J.F.. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci. Signal. 2020; 13:651. PubMed PMC
Dostalik P., Krafcikova P., Silhan J., Kozic J., Chalupska D., Chalupsky K., Boura E.. Structural analysis of the OC43 coronavirus 2'-O-RNA methyltransferase. J. Virol. 2021; 95:e00463-21. PubMed PMC
Wilamowski M., Sherrell D.A., Minasov G., Kim Y., Shuvalova L., Lavens A., Chard R., Maltseva N., Jedrzejczak R., Rosas-Lemus M.et al. .. 2021) 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. PNAS. 118:e2100170118. PubMed PMC
Viswanathan T., Misra A., Chan S.H., Qi S., Dai N., Arya S., Martinez-Sobrido L., Gupta Y.K.. A metal ion orients SARS-CoV-2 mRNA to ensure accurate 2'-O methylation of its first nucleotide. Nat. Commun. 2021; 12:3287. PubMed PMC
Rao S.T., Rossmann M.G.. Comparison of super-secondary structures in proteins. J. Mol. Biol. 1973; 76:241–256. PubMed
Vithani N., Ward M.D., Zimmerman M.I., Novak B., Borowsky J.H., Singh S., Bowman G.R.. SARS-CoV-2 nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys. J. 2021; 120:2880–2889. PubMed PMC
Hercik K., Brynda J., Nencka R., Boura E.. Structural basis of zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 2017; 162:2091–2096. PubMed
Ferron F., Subissi L., Silveira De Morais A.T., Le N.T.T., Sevajol M., Gluais L., Decroly E., Vonrhein C., Bricogne G., Canard B.et al. .. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. PNAS. 2018; 115:E162–E171. PubMed PMC
Rozycki B., Boura E.. Large, dynamic, multi-protein complexes: a challenge for structural biology. J. Phys. Condensed Matter. 2014; 26:463103. PubMed
Lin S., Chen H., Chen Z.M., Yang F.L., Ye F., Zheng Y., Yang J., Lin X., Sun H.L., Wang L.L.et al. .. Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Res. 2021; 49:5382–5392. PubMed PMC
Liu C., Shi W., Becker S.T., Schatz D.G., Liu B., Yang Y.. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science. 2021; 373:1142–1146. PubMed PMC
Robson F., Khan K.S., Le T.K., Paris C., Demirbag S., Barfuss P., Rocchi P., Ng W.L.. Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol. Cell. 2020; 79:710–727. PubMed PMC
Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M.. Mechanism of inhibition of ebola virus RNA-Dependent RNA polymerase by remdesivir. Viruses. 2019; 11:326. PubMed PMC
Gordon C.J., Tchesnokov E.P., Woolner E., Perry J.K., Feng J.Y., Porter D.P., Gotte M.. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020; 295:6785–6797. PubMed PMC
Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M.. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle east respiratory syndrome coronavirus. J. Biol. Chem. 2020; 295:4773–4779. PubMed PMC
Konkolova E., Dejmek M., Hrebabecky H., Sala M., Boserle J., Nencka R., Boura E.. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res. 2020; 182:104899. PubMed PMC
Smith E.C., Blanc H., Surdel M.C., Vignuzzi M., Denison M.R.. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog. 2013; 9:e1003565. PubMed PMC
Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R.et al. .. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018; 9:e00221-18. PubMed PMC
Eckerle L.D., Brockway S.M., Sperry S.M., Lu X., Denison M.R.. Effects of mutagenesis of murine hepatitis virus nsp1 and nsp14 on replication in culture. Adv. Exp. Med. Biol. 2006; 581:55–60. PubMed PMC
Eckerle L.D., Becker M.M., Halpin R.A., Li K., Venter E., Lu X., Scherbakova S., Graham R.L., Baric R.S., Stockwell T.B.et al. .. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 2010; 6:e1000896. PubMed PMC
Wang X., Sacramento C.Q., Jockusch S., Chaves O.A., Tao C., Fintelman-Rodrigues N., Chien M., Temerozo J.R., Li X., Kumar S.. Combination of antiviral drugs to inhibit SARS-CoV-2 polymerase and exonuclease as potential COVID-19 therapeutics. 2021; bioRxiv doi:21 July 2021, preprint: not peer reviewed10.1101/2021.07.21.453274. PubMed DOI PMC
Bouvet M., Imbert I., Subissi L., Gluais L., Canard B., Decroly E.. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. PNAS. 2012; 109:9372–9377. PubMed PMC
Finkel Y., Mizrahi O., Nachshon A., Weingarten-Gabbay S., Morgenstern D., Yahalom-Ronen Y., Tamir H., Achdout H., Stein D., Israeli O.et al. .. The coding capacity of SARS-CoV-2. Nature. 2021; 589:125–130. PubMed
Chen Y., Tao J., Sun Y., Wu A., Su C., Gao G., Cai H., Qiu S., Wu Y., Ahola T.et al. .. Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase. J. Virol. 2013; 87:6296–6305. PubMed PMC
Konkolova E., Klima M., Nencka R., Boura E.. Structural analysis of the putative SARS-CoV-2 primase complex. J. Struct. Biol. 2020; 211:107548. PubMed PMC
Dinesh D.C., Chalupska D., Silhan J., Koutna E., Nencka R., Veverka V., Boura E.. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog. 2020; 16:e1009100. PubMed PMC
Kokic G., Hillen H.S., Tegunov D., Dienemann C., Seitz F., Schmitzova J., Farnung L., Siewert A., Hobartner C., Cramer P.. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021; 12:279. PubMed PMC
Naydenova K., Muir K.W., Wu L.F., Zhang Z., Coscia F., Peet M.J., Castro-Hartmann P., Qian P., Sader K., Dent K.et al. .. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. PNAS. 2021; 118:e2021946118. PubMed PMC
Jochheim F.A., Tegunov D., Hillen H.S., Schmitzova J., Kokic G., Dienemann C., Cramer P.. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol. 2021; 4:999. PubMed PMC
Chen J., Malone B., Llewellyn E., Grasso M., Shelton P.M.M., Olinares P.D.B., Maruthi K., Eng E.T., Vatandaslar H., Chait B.T.et al. .. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell. 2020; 182:1560–1573. PubMed PMC
Frazier M.N., Dillard L.B., Krahn J.M., Perera L., Williams J.G., Wilson I.M., Stewart Z.D., Pillon M.C., Deterding L.J., Borgnia M.J.et al. .. Characterization of SARS2 nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res. 2021; 49:10136–10149. PubMed PMC
Kirchdoerfer R.N., Ward A.B.. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 2019; 10:2342. PubMed PMC
Slanina H., Madhugiri R., Bylapudi G., Schultheiss K., Karl N., Gulyaeva A., Gorbalenya A.E., Linne U., Ziebuhr J.. Coronavirus replication-transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the niran-rdrp subunit. PNAS. 2021; 118:e2022310118. PubMed PMC
Wang Y., Sun Y., Wu A., Xu S., Pan R., Zeng C., Jin X., Ge X., Shi Z., Ahola T.et al. .. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-Derived peptide in vitro and in vivo to reduce replication and pathogenesis. J. Virol. 2015; 89:8416–8427. PubMed PMC
Tong T.R. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect. Disord. Drug Targets. 2009; 9:223–245. PubMed
Wang Y., Hu W., Yuan Y.. Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J. Med. Chem. 2018; 61:9429–9441. PubMed
Hamil R.L., Hoehn M.M.. A9145, a new adenine-containing antifungal antibiotic. I. Discovery and isolation. J. Antibiot. (Tokyo). 1973; 26:463–465. PubMed
Pugh C.S., Borchardt R.T., Stone H.O.. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2'-)-methyltransferase, and viral multiplication. J. Biol. Chem. 1978; 253:4075–4077. PubMed
Vedel M., Lawrence F., Robert-Gero M., Lederer E.. The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by rous sarcoma virus. Biochem. Biophys. Res. Commun. 1978; 85:371–376. PubMed
Aouadi W., Blanjoie A., Vasseur J.J., Debart F., Canard B., Decroly E.. Binding of the methyl donor S-adenosyl-l-methionine to middle east respiratory syndrome coronavirus 2'-O-Methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J. Virol. 2017; 91:e02217-16. PubMed PMC
Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M.et al. .. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021; 7:2214–2220. PubMed
Devkota K., Schapira M., Perveen S., Khalili Yazdi A., Li F., Chau I., Ghiabi P., Hajian T., Loppnau P., Bolotokova A.et al. .. Probing the SAM binding site of SARS-CoV-2 nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS Discov. 2021; 26:1200–1211. PubMed PMC
Khalili Yazdi A., Li F., Devkota K., Perveen S., Ghiabi P., Hajian T., Bolotokova A., Vedadi M.. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. SLAS Discov. 2021; 26:757–765. PubMed PMC
Perveen S., Khalili Yazdi A., Devkota K., Li F., Ghiabi P., Hajian T., Loppnau P., Bolotokova A., Vedadi M.. A high-throughput RNA displacement assay for screening SARS-CoV-2 nsp10-nsp16 complex toward developing therapeutics for COVID-19. SLAS Discov. 2021; 26:620–627. PubMed PMC
Bobileva O., Bobrovs R., Kanepe I., Patetko L., Kalnins G., Sisovs M., Bula A.L., Gri Nberga S., Boroduskis M.R., Ramata-Stunda A.et al. .. Potent SARS-CoV-2 mRNA cap methyltransferase inhibitors by bioisosteric replacement of methionine in SAM cosubstrate. ACS Med. Chem. Lett. 2021; 12:1102–1107. PubMed PMC
Ahmed-Belkacem R., Sutto-Ortiz P., Guiraud M., Canard B., Vasseur J.J., Decroly E., Debart F.. Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase. Eur. J. Med. Chem. 2020; 201:112557. PubMed PMC
Li J.J., Wei H., Zhou M.M.. Structure-Guided design of a methyl donor cofactor that controls a viral histone H3 lysine 27 methyltransferase activity. J. Med. Chem. 2011; 54:7734–7738. PubMed PMC
Borchardt R.T., Wu Y.S.. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 3. Modifications of the sugar portion of S-adenosylhomocysteine. J. Med. Chem. 1975; 18:300–304. PubMed
Hickey S.F., Hammond M.C.. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs. Chem. Biol. 2014; 21:345–356. PubMed PMC
Ke M., Chen Y., Wu A., Sun Y., Su C., Wu H., Jin X., Tao J., Wang Y., Ma X.et al. .. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res. 2012; 167:322–328. PubMed PMC
Aouadi W., Eydoux C., Coutard B., Martin B., Debart F., Vasseur J.J., Contreras J.M., Morice C., Querat G., Jung M.L.et al. .. Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antiviral Res. 2017; 144:330–339. PubMed PMC
Kasprzyk R., Spiewla T.J., Smietanski M., Golojuch S., Vangeel L., De Jonghe S., Jochmans D., Neyts J., Kowalska J., Jemielity J.. Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Res. 2021; 193:105142. PubMed PMC
Pearson L.A., Green C.J., Lin D., Petit A.P., Gray D.W., Cowling V.H., Fordyce E.A.F.. Development of a high-throughput screening assay to identify inhibitors of the SARS-CoV-2 guanine-n7-methyltransferase using rapidfire mass spectrometry. Slas Discov. 2021; 26:749–756. PubMed PMC
Cihlova B., Huskova A., Boserle J., Nencka R., Boura E., Silhan J.. High-Throughput fluorescent assay for inhibitor screening of proteases from RNA viruses. Molecules. 2021; 26:3792. PubMed PMC
Iketani S., Forouhar F., Liu H., Hong S.J., Lin F.Y., Nair M.S., Zask A., Huang Y., Xing L., Stockwell B.R.et al. .. Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nat. Commun. 2021; 12:2016. PubMed PMC
Coelho C., Gallo G., Campos C.B., Hardy L., Wurtele M.. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One. 2020; 15:e0240079. PubMed PMC
Ma C.L., Sacco M.D., Xia Z.L., Lambrinidis G., Townsend J.A., Hu Y.M., Meng X.Z., Szeto T., Ba M., Zhang X.J.et al. .. Discovery of SARS-CoV-2 Papain-like protease inhibitors through a combination of high-throughput screening and a flipgfp-Based reporter assay. ACS Central Sci. 2021; 7:1245–1260. PubMed PMC
Scholle M.D., Liu C., Deval J., Gurard-Levin Z.A.. Label-Free screening of SARS-CoV-2 NSP14 exonuclease activity using SAMDI mass spectrometry. Slas Discov. 2021; 26:766–774. PubMed PMC
White M.A., Lin W., Cheng X.. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 nsp13 helicase. J. Phys. Chem. Lett. 2020; 11:9144–9151. PubMed PMC
Kim Y., Wower J., Maltseva N., Chang C., Jedrzejczak R., Wilamowski M., Kang S., Nicolaescu V., Randall G., Michalska K.et al. .. Tipiracil binds to uridine site and inhibits nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun Biol. 2021; 4:193. PubMed PMC
Schafer A., Martinez D.R., Won J.J., Moreira F.R., Brown A.J., Gully K.L., Kalla R., Chun K., Pont Du, Babusis D. Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice. 2021; bioRxiv doi:17 September 2021, preprint: not peer reviewed10.1101/2021.09.13.460111. DOI
Cox R.M., Wolf J.D., Lieber C.M., Sourimant J., Lin M.J., Babusis D., DuPont V., Chan J., Barrett K.T., Lye D.et al. .. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat. Commun. 2021; 12:6415. PubMed PMC
Xie Y., Yin W., Zhang Y., Shang W., Wang Z., Luan X., Tian G., Aisa H.A., Xu Y., Xiao G.et al. .. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Res. 2021; 31:1212–1214. PubMed PMC
Painter W.P., Holman W., Bush J.A., Almazedi F., Malik H., Eraut N., Morin M.J., Szewczyk L.J., Painter G.R.. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother. 2021; 65:e02428-20. PubMed PMC
Good S.S., Westover J., Jung K.H., Zhou X.J., Moussa A., La Colla P., Collu G., Canard B., Sommadossi J.P.. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrob. Agents Chemother. 2021; 65:e02479-20. PubMed PMC
Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
Rational Design of Highly Potent SARS-CoV-2 nsp14 Methyltransferase Inhibitors
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
Structure of monkeypox virus poxin: implications for drug design
A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases