Evolution of proteins involved in the final steps of juvenile hormone synthesis
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36707023
PubMed Central
PMC10015273
DOI
10.1016/j.jinsphys.2023.104487
PII: S0022-1910(23)00013-6
Knihovny.cz E-resources
- Keywords
- Alternative splicing, Epoxidase, Evolution, Gene duplication, Juvenile hormone, Methyl transferase,
- MeSH
- Corpora Allata MeSH
- Insecta genetics metabolism MeSH
- Insect Proteins metabolism MeSH
- Juvenile Hormones * metabolism MeSH
- Sesquiterpenes * metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Juvenile Hormones * MeSH
- Sesquiterpenes * MeSH
Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), is a key regulator of insect metamorphosis, reproduction, caste differentiation, and polyphenism. The first part of JH biosynthesis occurs via the universal eukaryotic mevalonate pathway. The final steps involve epoxidation and methylation. However, the sequence of these steps might not be conserved among all insects and Crustacea. Therefore, we used available genomic and transcriptomic data and identified JH acid methyltransferase (JHAMT), analyzed their genomic duplications in selected model organisms, and reconstructed their phylogeny. We have further reconstructed phylogeny of FAMeT proteins and show that evolution of this protein group is more complicated than originally appreciated. The analysis delineates important milestones in the evolution of several JH biosynthetic enzymes in arthropods, reviews major literature data on the last steps of JH synthesis, and defines questions and some hypotheses worth pursuing experimentally.
See more in PubMed
Ashok M., Turner C., Wilson T.G. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc Natl Acad Sci USA. 1998;95(6):2761–2766. doi: 10.1073/pnas.95.6.2761. PubMed DOI PMC
Bajgar A., Jindra M., Dolezel D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A. 2013;110:4416–4421. doi: 10.1073/pnas.1217060110. PubMed DOI PMC
Burtenshaw S.M., Su P.P., Zhang J.R., Tobe S.S., Dayton L., Bendena W.G. A putative farnesoic acid O-methyltransferase (FAMeT) orthologue in Drosophila melanogaster (CG10527): relationship to juvenile hormone biosynthesis? Peptides. 2008;29(2):242–251. doi: 10.1016/j.peptides.2007.10.030. PubMed DOI
Clifton M.E., Correa S., Rivera-Perez C., Nouzova M., Noriega F.G. Male Aedes aegypti mosquitoes use JH III transferred during copulation to influence previtellogenic ovary physiology and affect the reproductive output of female mosquitoes. J Insect Physiol. 2014;64:40–47. doi: 10.1016/j.jinsphys.2014.03.006. PubMed DOI PMC
Daimon T., Shinoda T. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15) Biotechnol Appl Biochem. 2013;60(1):82–91. doi: 10.1002/bab.1058. PubMed DOI
Daimon T., Uchibori M., Nakao H., Sezutsu H., Shinoda T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc Natl Acad Sci USA. 2015;112(31):E4226–E4235. doi: 10.1073/pnas.1506645112. PubMed DOI PMC
Defelipe L.A., Dolghih E., Roitberg A.E., Nouzova M., Mayoral J.G., Noriega F.G., Turjanski A.G. Juvenile hormone synthesis: “esterify then epoxidize” or “epoxidize then esterify”? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem Mol Biol. 2011;41(4):228–235. doi: 10.1016/j.ibmb.2010.12.008. PubMed DOI PMC
Dermauw W., Van Leeuwen T., Feyereisen R. Diversity and evolution of the P450 family in arthropods. Insect Biochem Mol Biol. 2020;127 doi: 10.1016/j.ibmb.2020.103490. PubMed DOI
Dominguez C.V., Maestro J.L. Expression of juvenile hormone acid O-methyltransferase and juvenile hormone synthesis in Blattella germanica. Insect Sci. 2018;25(5):787–796. doi: 10.1111/1744-7917.12467. PubMed DOI
Fu K.Y., Li Q., Zhou L.T., Meng Q.W., Lü F.G., Guo W.C., Li G.Q. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Manag Sci. 2015;72(6):1231–1241. doi: 10.1002/ps.4103. PubMed DOI
Goodman W.G., Cusson M. In: Insect Endocrinology. Gilbert L.I., editor. Academic Press; New York: 2012. The juvenile hormones; pp. 310–365. DOI
Guo W., Song J., Yang P., Chen X., Chen D., Ren D., Kang L., Wang X. Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts. PLoS Genet. 2020;16(4):e1008762. PubMed PMC
Guo P., Zhang Y., Zhang L., Xu H., Zhang H., Wang Z., Jiang Y., Molloy D., Zhao P., Xia Q. Structural basis for juvenile hormone biosynthesis by the juvenile hormone acid methyltransferase. J Biol Chem. 2021;297(5) doi: 10.1016/j.jbc.2021.101234. PubMed DOI PMC
Hartfelder K., Emlen D.J. In: Insect Endocrinology. Gilbert L.I., editor. Academic Press; New York: 2012. Endocrine control of insect polyphenism; pp. 464–522. DOI
Hejnikova M., Nouzova M., Ramirez C.E., Fernandez-Lima F., Noriega F.G., Dolezel D. Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. Insect Biochem Mol Biol. 2022;142 doi: 10.1016/j.ibmb.2022.103721. PubMed DOI
Helvig C., Koener J.F., Unnithan G.C., Feyereisen R. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA. 2004;101(12):4024–4029. doi: 10.1073/pnas.0306980101. PubMed DOI PMC
Holtof M., Van Lommel J., Gijbels M., Dekempeneer E., Nicolai B., Vanden Broeck J., Marchal E. Crucial Role of Juvenile Hormone Receptor Components Methoprene-Tolerant and Taiman in Sexual Maturation of Adult Male Desert Locusts. Biomolecules. 2021;11(2):244. doi: 10.3390/biom11020244. PubMed DOI PMC
Huang J., Marchal E., Hult E.F., Tobe S.S. Characterization of the juvenile hormone pathway in the viviparous cockroach. Diploptera punctata. PLoS One. 2015;10(2):e0117291. PubMed PMC
Hui J.H., Hayward A., Bendena W.G., Takahashi T., Tobe S.S. Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. Peptides. 2010;31(3):451–455. doi: 10.1016/j.peptides.2009.10.003. PubMed DOI
Jindra M., Palli S.R., Riddiford L.M. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol. 2013;58:181–204. doi: 10.1146/annurev-ento-120811-153700. PubMed DOI
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kolmogorov M., Yuan J., Lin Y., Pevzner P.A. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Konopova B., Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci USA. 2007;104(25):10488–10493. doi: 10.1073/pnas.0703719104. PubMed DOI PMC
Konopova B., Smykal V., Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One. 2011;6(12):e28728. PubMed PMC
Kotaki T., Shinada T., Kaihara K., Ohfune Y., Numata H. Structure determination of a new juvenile hormone from a heteropteran insect. Org Lett. 2009;11(22):5234–5237. doi: 10.1021/ol902161x. PubMed DOI PMC
Kotwica-Rolinska J., Chodáková L., Smýkal V., Damulewicz M., Provazník J., Wu B.C., Hejníková M., Chvalová D., Doležel D. Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock. Mol Biol Evol. 2022;39(1):msab346. doi: 10.1093/molbev/msab346. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li W., Huang Z.Y., Liu F., Li Z., Yan L., Zhang S., Chen S., Zhong B., Su S. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation. PLoS One. 2013;8(7):e68544. PubMed PMC
Marchal E., Zhang J., Badisco L., Verlinden H., Hult E.F., Van Wielendaele P., Yagi K.J., Tobe S.S., Vanden Broeck J. Final steps in juvenile hormone biosynthesis in the desert locust Schistocerca gregaria. Insect Biochem Mol Biol. 2011;41(4):219–227. doi: 10.1016/j.ibmb.2010.12.007. PubMed DOI
Matsumoto K., Kotaki T., Numata H., Shinada T., Goto S.G. Juvenile hormone III skipped bisepoxide is widespread in true bugs (Hemiptera: Heteroptera) R Soc Open Sci. 2021;8(2) doi: 10.1098/rsos.202242. PubMed DOI PMC
Mayoral J.G., Nouzova M., Yoshiyama M., Shinoda T., Hernandez-Martinez S., Dolghih E., Turjanski A.G., Roitberg A.E., Priestap H., Perez M., Mackenzie L., Li Y., Noriega F.G. Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochem Mol Biol. 2009;39(1):31–37. doi: 10.1016/j.ibmb.2008.09.010. PubMed DOI PMC
Mesquita, R.D., Vionette-Amaral, R.J., Lowenberger, C., Rivera-Pomar, R., Monteiro, F.A., et al., 2015. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A, 112(48), 14936–14941. 10.1073/pnas.1506226112; Erratum in: Proc Natl Acad Sci U S A, 113(10), E1415–1416, 10.1073/pnas.1600205113. PubMed PMC
Meyer A.S., Schneiderman H.A., Hanzmann E., Ko J.H. The two juvenile hormones from the cecropia silk moth. Proc Natl Acad Sci USA. 1968;60(3):853–860. doi: 10.1073/pnas.60.3.853. PubMed DOI PMC
Minakuchi C., Namiki T., Yoshiyama M., Shinoda T. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J. 2008;275(11):2919–2931. doi: 10.1111/j.1742-4658.2008.06428.x. PubMed DOI
Minakuchi C., Ishii F., Washidu Y., Ichikawa A., Tanaka T., Miura K., Shinoda T. Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. J Insect Physiol. 2015;80:61–70. doi: 10.1016/j.jinsphys.2015.04.008. PubMed DOI
Minh B.Q., Nguyen M.A., von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
Mukai A., Mano G., Des Marteaux L., Shinada T., Goto S.G. Juvenile hormone as a causal factor for maternal regulation of diapause in a wasp. Insect Biochem Mol Biol. 2022;144 doi: 10.1016/j.ibmb.2022.103758. PubMed DOI
Nijhout H.F. Princeton Univ. Press; Princeton: 1994. Insect Hormones.
Niwa R., Niimi T., Honda N., Yoshiyama M., Itoyama K., Kataoka H., Shinoda T. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol. 2008;38(7):714–720. doi: 10.1016/j.ibmb.2008.04.003. PubMed DOI
Noriega F.G., Ribeiro J.M., Koener J.F., Valenzuela J.G., Hernandez-Martinez S., Pham V.M., Feyereisen R. Comparative genomics of insect juvenile hormone biosynthesis.“. Insect Biochem Mol Biol. 2006;36(4):366–374. doi: 10.1016/j.ibmb.2006.01.013. PubMed DOI PMC
Nouzova, M., Edwards, M.J., Michalkova, V., Ramirez, C.E., Ruiz, M., Areiza, M., DeGennaro, M., Fernandez-Lima, F., Feyereisen, R., Jindra, M., Noriega, F.G., 2021. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A, 118(45), e2109381118. 10.1073/pnas.2109381118. PubMed PMC
Peter M.G., Gunawan S., Emmerich H. Preparation of optically pure juvenile hormone I labelled in the ester methyl group with tritium at very high specific activity. Experientia. 1979;35:1141–1142. doi: 10.1007/BF01963247. DOI
Price M.N., Dehal P.S., Arkin A.P. FastTree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix. Mol. Biol. Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Röller H., Dahms K.H., Sweely C.C., Trost B.M. The structure of the juvenile hormone. Angew. Chem. Int. Ed. 1967;6:1966–1967. doi: 10.1002/anie.196701792. DOI
Sehnal F., Svacha P., Zrzavy J. In: Metamorphosis. Gilbert L.I., Tata J.R., Atkinson B.G., editors. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells; Academic Press, San Diego: 1996. Evolution of insect metamorphosis; pp. 3–58.
Sheng Z., Ma L., Cao M.X., Jiang R.J., Li S. Juvenile hormone acid methyl transferase is a key regulatory enzyme for juvenile hormone synthesis in the Eri silkworm, Samia cynthica ricini. Arch Insect Biochem Physiol. 2008;69(3):143–154. doi: 10.1002/arch.20268. PubMed DOI
Shin S.W., Zou Z., Saha T.T., Raikhel A.S. bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc Natl Acad Sci U S A. 2012;109:16576–16581. doi: 10.1073/pnas.1214209109. PubMed DOI PMC
Shinoda T., Itoyama K. Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci U S A. 2003;100(21):11986–11991. doi: 10.1073/pnas.2134232100. PubMed DOI PMC
Shirk P.D., Dahm K.H., Röller H. The accessory sex glands as the repository for juvenile hormone in male cecropia moths. Z Naturforsch C Biosci. 1976;31(3–4):199–200. doi: 10.1515/znc-1976-3-421. PubMed DOI
Smykal V., Bajgar A., Provaznik J., Fexova S., Buricova M., Takaki K., Hodkova M., Jindra M., Dolezel D. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 2014;45:69–76. doi: 10.1016/j.ibmb.2013.12.003. PubMed DOI
Smykal V., Pivarci M., Provaznik J., Bazalova O., Jedlicka P., Luksan O., Horak A., Vaneckova H., Benes V., Fiala I., Hanus R., Dolezel D. Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Mol Biol Evol. 2020;37:1775–1789. doi: 10.1093/molbev/msaa048. PubMed DOI PMC
So W.L., Nong W., Xie Y., Baril T., Ma H.Y., Qu Z., et al. Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat Commun. 2022;13(1):3010. doi: 10.1038/s41467-022-30690-0. PubMed DOI PMC
Takatsuka J., Nakai M., Shinoda T. A virus carries a gene encoding juvenile hormone acid methyltransferase, a key regulatory enzyme in insect metamorphosis. Sci Rep. 2017;7(1):13522. doi: 10.1038/s41598-017-14059-8. PubMed DOI PMC
Tobe S.S., Pratt G.E. Dependence of juvenile hormone release from corpus allatum on intraglandular content. Nature. 1974;252(5483):474–476. doi: 10.1038/252474a0. PubMed DOI
Toyota K., Miyakawa H., Hiruta C., Furuta K., Ogino Y., Shinoda T., Tatarazako N., Miyagawa S., Shaw J.R., Iguchi T. Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. J Insect Physiol. 2015;80:22–30. doi: 10.1016/j.jinsphys.2015.02.002. PubMed DOI
Tsang S.S.K., Law S.T.S., Li C., Qu Z., Bendena W.G., Tobe S.S., Hui J.H.L. Diversity of Insect Sesquiterpenoid Regulation. Front Genet. 2020;11:1027. doi: 10.3389/fgene.2020.01027. PubMed DOI PMC
Urbanova V., Bazalova O., Vaneckova H., Dolezel D. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 2016;70:184–190. doi: 10.1016/j.ibmb.2016.01.003. PubMed DOI
Villalobos-Sambucaro M.J., Nouzova M., Ramirez C.E., Alzugaray M.E., Fernandez-Lima F., Ronderos J.R., Noriega F.G. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci Rep. 2020;10(1):3091. doi: 10.1038/s41598-020-59495-1. PubMed DOI PMC
Wang J.R., Holt J., McMillan L., Jones C.D. FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinf. 2018;19(1):50. doi: 10.1186/s12859-018-2051-3. PubMed DOI PMC
Wen D., Rivera-Perez C., Abdou M., Jia Q., He Q., Liu X., Zyaan O., Xu J., Bendena W.G., Tobe S.S., Noriega F.G., Palli S.R., Wang J., Li S. Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet. 2015;11(3):e1005038. PubMed PMC
Wigglesworth V.B. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q J Microsc Sci. 1934;77:191–222.
Wigglesworth V.B. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera) Q J Microsc Sci. 1936;79:91–121.
Wigglesworth V.B. The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera) J Exp Biol. 1940;17:201–223.
Wigglesworth V.B. The functions of the corpus allatum in Rhodnius prolixus (Hemiptera) J Exp Biol. 1948;25:1–14.
Xie X., Tao T., Liu M., Zhou Y., Liu Z., Zhu D. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus. Anim Reprod Sci. 2016;168:40–49. doi: 10.1016/j.anireprosci.2016.02.024. PubMed DOI
Yang Z.M., Wu Y., Li F.F., Zhou Z.J., Yu N., Liu Z.W. Genomic Identification and Functional Analysis of JHAMTs in the Pond Wolf Spider Pardosa pseudoannulata. Int J Mol Sci. 2021;22(21):11721. doi: 10.3390/ijms222111721. PubMed DOI PMC
Yin Y., Qiu Y.W., Huang J., Tobe S.S., Chen S.S., Kai Z.P. Enzymes in the juvenile hormone biosynthetic pathway can be potential targets for pest control. Pest Manag Sci. 2020;76(3):1071–1077. doi: 10.1002/ps.5617. PubMed DOI
Zhao M., Zhang F., Wang W., Liu Z., Ma C., Fu Y., Chen W., Ma L. Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab Scylla paramamosain. Int J Mol Sci. 2022;23(16):9451. doi: 10.3390/ijms. PubMed DOI PMC
Zhou C., Yang X.B., Yang H., Gong M.F., Long G.Y., Jin D.C. Role of SfJHAMT and SfFAMeT in the reproductive regulation of Sogatella furcifera and its expression under insecticide stress. Pestic Biochem Physiol. 2021;173 doi: 10.1016/j.pestbp.2021.104779. PubMed DOI