• This record comes from PubMed

Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage

. 2025 Jan 07 ; 15 (1) : 1125. [epub] 20250107

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
IGA_PrF_2024_029 Faculty of Science, Palacky University
IGA_PrF_2024_029 Faculty of Science, Palacky University
IGA_PrF_2024_029 Faculty of Science, Palacky University
32270483 National Natural Science Foundation of China

Links

PubMed 39775080
PubMed Central PMC11707193
DOI 10.1038/s41598-024-80950-w
PII: 10.1038/s41598-024-80950-w
Knihovny.cz E-resources

The click beetles (Elateridae) represent the major and well-known group of the polyphagan superfamily Elateroidea. Despite a relatively rich fossil record of Mesozoic Elateridae, only a few species are described from the Upper Cretaceous Burmese amber. Although Elateridae spend most of their lives as larvae, our knowledge on immature stages of this family is limited, which is especially valid for the fossils. So far, only a single larval click beetle has been reported from Burmese amber. Here, we describe two larval specimens from the same deposit which based on their morphology unambiguously belong to the predominantly Southern Hemisphere subfamily Pityobiinae, being the most similar to the representatives of tribe Tibionemini. However, since the larvae of the closely related bioluminescent Campyloxenini have not yet been described, we place our specimens to Tibionemini only tentatively. One species of Pityobiinae was recently described from Burmese amber based on adults, and we discuss if it can be congeneric with the here-reported larvae. Recent representatives of the Tibionemini + Campyloxenini clade are known from South America and New Zealand, and this group is hypothesized to have a Gondwanan origin. Hence, the newly discovered Burmese amber larvae may further contribute to a recently highly debated hypothesis that biota of the resin-producing forest on the Burma Terrane, which was probably an island drifting northward at the time of amber deposition, had at least partly Gondwanan affinities. The discovery of enigmatic click beetle larvae in the Upper Cretaceous Burmese amber sheds further light on the palaeodiversity and distribution of the relatively species-poor Gondwanan clade of click beetles, which contain a recent bioluminescent lineage, as well as on the taxonomic composition of the extinct Mesozoic ecosystem.

See more in PubMed

Grimaldi, D. A., Engel, M. S. & Nascimbene, P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–72 (2002).

Ross, A. J. Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology2, 22–84 (2019).

Ross, A. J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2019. Palaeoentomology3, 103–118 (2020).

Ross, A. J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2020. Palaeoentomology4, 57–76 (2021).

Ross, A. J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2021. Palaeoentomology5, 27–45 (2022).

Ross, A. J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2022. Palaeoentomology6, 22–40 (2023).

Ross, A. J. Supplement to the Burmese (Myanmar) amber checklist and bibliography, 2023. Palaeoentomology7, 148–165 (2024).

Ross, A. J. Complete checklist of Burmese (Myanmar) amber taxa 2023. Mesozoic1, 21–57 (2024).

Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res.37, 155–163 (2012).

Zheng, D. et al. A late Cretaceous amber biota from central Myanmar. Nat. Commun.9, 3170 (2018). PubMed PMC

Xing, L. & Qiu, L. Zircon U–Pb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).

Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: Spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex.1, 449–455 (2007).

Ross, A., Mellish, C., York, P. & Crighton, B. in Biodiversity of Fossils in Amber from the Major World Deposits (ed. Penney, D.), 208–235 (Siri Scientific Press, 2010).

Xing, L., Stanley, E. L., Bai, M. & Blackburn, D. C. The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber. Sci. Rep.8, 8770 (2018). PubMed PMC

Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl. Acad. Sci. U. S. A. 116, 11345–11350 (2019). PubMed PMC

Bolotov, I. N. et al. New fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar. Sci. Rep.11, 6646 (2021). PubMed PMC

Wang, H., Matzke-Karasz, R. & Horne, D. J. Mid-Cretaceous coastal amber forest palaeoenvironment revealed by exceptionally preserved ostracods from an extant lineage. Foss. Rec. 25, 147–172 (2022).

Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res.19, 3–21 (2011).

Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev.113, 212–270 (2012).

Morley, C., Chantraprasert, S., Kongchum, J. & Chenoll, K. The West Burma Terrane, a review of recent paleo-latitude data, its geological implications and constraints. Earth-Sci. Rev.220, 103722 (2021).

Sevastjanova, I. et al. Myanmar and Asia united, Australia left behind long ago. Gondwana Res.32, 24–40 (2016).

Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci.12, 863–868 (2019). PubMed PMC

Licht, A. et al. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res.87, 303–319 (2020).

Najman, Y. et al. The timing of collision between Asia and the West Burma Terrane, and the development of the Indo-Burman Ranges. Tectonics41, e2021TC007057 (2022).

Rasnitsyn, A. P. & Öhm-Kühnle, C. Three new female Aptenoperissus from mid-Cretaceous Burmese amber (Hymenoptera, Stephanoidea, Aptenoperissidae): Unexpected diversity of paradoxical wasps suggests insular feature of source biome. Cretac. Res.91, 168–175 (2018).

Poinar, G. Burmese amber: Evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol.37, 155–163 (2019).

Wriedt, A. L., Harvey, M. S., Hammel, J. U., Kotthoff, U. & Harms, D. The second chthonioid pseudoscorpion (Pseudoscorpiones: Chthoniidae) from mid-Cretaceous Burmese amber: A new genus with unique morphological features and potential Gondwanan affinities. J. Arachnol. 48, 311–321 (2021).

De Francesco Magnussen, I., Müller, S. P., Hammel, J. U., Kotthoff, U. & Harms, D. Diversity of schizomids (Arachnida: Schizomida) revealed by new fossil genera and species from mid-Cretaceous Burmese amber with implications for a Gondwanan origin of the Burma Terrane. Zool. J. Linn. Soc.196, 792–844 (2022).

Hinkelman, J. Mongolblatta sendii sp. n. (Mesoblattinidae) from North Myanmar amber links record to Laurasian sediments. Palaeontogr. Ab. A. 321, 81–96 (2022).

Douglas, H. B. et al. Anchored phylogenomics, evolution and systematics of Elateridae: Are all bioluminescent Elateroidea derived click beetles? Biology10, 451 (2021). PubMed PMC

Motyka, M. et al. Campyloxenus: Shedding light on the delayed origin of bioluminescence in ancient Gondwanan click beetles. iScience26, 108440 (2023). PubMed PMC

Evans, M. E. G. The jump of the click beetle (Coleoptera, Elateridae)—A preliminary study. J. Zool.167, 319–336 (1972).

Ruan, Y. et al. Functional morphology of the thorax of the click beetle Campsosternus auratus (Coleoptera, Elateridae), with an emphasis on its jumping mechanism. Insects13, 248 (2022). PubMed PMC

Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol.60, 313–334 (2015). PubMed

Costa, C., Lawrence, J. F. & Rosa, S. P. Elateridae Leach, 1815 in Coleoptera, Beetles; volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim) (volume eds Leschen, R. A. B. et al.) in Handbook of Zoology, Arthropods: Insecta (eds Kristensen, N. P. & Beutel, R. G.), 75–103 (Walter de Gruyter GmbH & Co, 2010).

Fallon, T. R. et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife7, e36495 (2018). PubMed PMC

Kusy, D., Motyka, M., Bocek, M., Vogler, A. P. & Bocak, L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep.8, 17084 (2018). PubMed PMC

Kundrata, R. & Bocak, L. Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae). Zool. J. Linn. Soc.187, 413–452 (2019).

Kundrata, R., Gunter, N. L., Douglas, H. & Bocak, L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): Redefinition of Pityobiinae, with a description of a new subfamily, Parablacinae, from the Australasian Region. Austral Entomol.55, 291–302 (2016).

Bi, W. X., He, J. W., Chen, C. C., Kundrata, R. & Li, X. Y. Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea), with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys864, 79–97 (2019). PubMed PMC

Kusy, D., Motyka, M. & Bocak, L. Click beetle mitogenomics with the definition of a new subfamily Hapatesinae from Australasia (Coleoptera: Elateridae). Insects12, 17 (2021). PubMed PMC

Kusy, D. et al. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol.46, 111–123 (2021).

Hyslop, J. A. The phylogeny of the Elateridae based on larval characters. Ann. Entomol. Soc. Am.10, 241–263 (1917).

Ôhira, H. Morphological and Taxonomic Study on the Larvae of Elateridae in Japan (Coleoptera) (Ôhira, H., 1962).

Dolin, V. G. Opredelitel lichinok zhukov-shchelkunov fauny SSSR [Key to wireworms of the fauna of the USSR] (Urozhai, 1978).

Rosa, S. P., Albertoni, F. F. & Bená, D. C. Description of the immature stages of Platycrepidius dewynteri Chassain (Coleoptera, Elateridae, Agrypninae, Platycrepidiini) from Brazil with a synopsis of the larval characters of Agrypninae tribes. Zootaxa3914, 318–330 (2015). PubMed

Calder, A. A. Click Beetles: Genera of Australian Elateridae (Coleoptera). Monographs on Invertebrate Taxonomy, Vol. 2 (CSIRO Publishing, 1996).

Kundrata, R., Packova, G., Prosvirov, A. S. & Hoffmannova, J. The fossil record of Elateridae (Coleoptera: Elateroidea): Described species, current problems and future prospects. Insects12, 286 (2021). PubMed PMC

Kundrata, R., Packova, G. & Hoffmannova, J. Fossil genera in Elateridae (Insecta, Coleoptera): a Triassic origin and Jurassic diversification. Insects11, 394 (2020). PubMed PMC

Dolin, V. G. Click beetles (Coleoptera, Elateridae) from the Upper Jurassic of Karatau, in Fossil Insects of the Mesozoic (eds Dolin, V. G., Panfilov, D. V., Ponomarenko, A. G. & Pritykina, D. N.) 17–81 (Naukova Dumka, 1980).

Kundrata, R., Triskova, K. & Prosvirov, A. S. Paleoselatosomus cretaceus gen. et sp. (Coleoptera: Elateridae): the first known representative of Dendrometrinae from the Upper Cretaceous Burmese amber. Bull. Geosci.99, 1–12 (2024).

Zippel, A., Haug, C., Müller, P. & Haug, J. T. Elateriform beetle larvae preserved in about 100-million-year-old Kachin amber. PalZ98, 245–262 (2024).

Ulrich, G. W. The phylogeny of the Pityobiinae based upon larval morphology (Elateridae: Coleoptera) (University of California, Berkeley, USA, PhD Dissertation, 1988).

Calder, A. A. The New Zealand genus Metablax (Coleoptera: Elateridae) and its relationship to the Campsosterninae. N. Z. J. Zool.3, 313–325 (1976).

Angulo, A. O. Descripción de la larva y pupa de Tibionema abdominalis (Guérin) (Coleoptera: Elateridae). Bol. Soc. Biol. Conc. 42, 307–311 (1970).

Casari, S. A. Larvae of Alaus myops, A. oculatus, Chalcolepidius porcatus, Hemirhipus apicalis and generic larval characterization (Elateridae, Agrypninae, Hemirhipini). Iheringia Sér. Zool.92, 93–110 (2002).

Rosa, S. P., Németh, T. & Kundrata, R. Comparative morphology of immature stages of Ludioctenus cyprius (Baudi di Selve, 1871) (Coleoptera: Elateridae: Agrypninae), with discussion on the monophyly of Hemirhipini. Zool. Anz. 283, 33–39 (2019).

Glen, R. Larvae of the elaterid beetles of the tribe Lepturoidini (Coleoptera: Elateridae). Smithson. Misc. Collect.111, 1–246 (1950).

Dolin, V. G. Click-Beetles (Agrypninae, Negastrinae, Diminae, Athoinae, Oestodinae). Fauna Ukraini Vol. 19 (Akademia Nauk Ukrainian SSR, 1982).

Penev, L. Description of the larva of Athous monilicornis (Coleoptera, Elateridae) with notes on the species distribution. Vestn. Zool.39, 55–58 (2005).

Dušánek, V. The larval key to Ctenicera species (Coleoptera, Elateridae) of the Czech Republic and Slovakia. Elateridarium7, 68–76 (2013).

Crowson, R. A. On some new characters of classificatory importance in adults of Elateridae (Coleoptera). Entomol. Mon Mag. 96, 158–161 (1961).

Dolin, V. G. Zhilkovanie kril’ev zhukov-shchelkunov (Coleoptera, Elateridae) i ego znachenie dlya sistematiki semeystva. [Wing venation in click-beetles (Coleoptera, Elateridae) and its significance in the taxonomy of the family]. Zool. Zhurnal. 54, 1618–1633 (1975).

Calder, A. A. Notes on Parablax Schwarz and the subfamily Pityobiinae with description of Parablax ossa sp. n. from Tasmania (Coleoptera: Elateridae). J. Aust. Ent. Soc.31, 143–158 (1992).

Neboiss, A. Notes on distribution and descriptions of new species. (Orders: Odonata, Plecoptera, Orthoptera, Trichoptera and Coleoptera). Mem. Mus. Vic.25, 243–257 (1962).

Lawrence, J. F. & Ślipiński, A. Australian beetles. Morphology, classification and keys, Vol. 1 (CSIRO Publishing, 2013).

Jewett, H. H. Identification of some larval Elateridae found in Kentucky. Bull. Ky. Agric. Exp. Stn.489, 1–40 (1946).

Casari-Chen, S. A. & Costa, C. Larvas de Coleoptera da Região Neotropical XV. Revisão de Pyrophorini (Elateridae, Pyrophorinae). Rev. Bras. Entomol.30, 323–357 (1986).

Rosa, S. P., Costa, C. & Higashi, N. New data on the natural history and description of the immatures of Fulgeochlizus bruchi, a bioluminescent beetle from Central Brazil (Elateridae, Pyrophorini). Pap. Avulsos Zool.50, 635–641 (2010).

Otto, R. Descriptions of two new elateroid beetles (Coleoptera: Eucnemidae, Elateridae) from Burmese amber. Insecta Mundi702, 1–6 (2019).

Peris, D., Ruzzier, E., Perrichot, V. & Delclòs, X. Evolutionary and paleobiological implications of Coleoptera (Insecta) from Tethyan-influenced Cretaceous ambers. Geosci. Front.7, 695–706 (2016).

De Oliveira, S. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol.26, 2594–2601 (2016). PubMed

Jouault, C. & Nel, A. The oldest record of window fly supports a Gondwanan origin of the family (Diptera: Scenopinidae). Palaeoentomology3, 483–491 (2020).

Cai, C. & Huang, D. First definitive fossil agyrtodine beetles: An extant southern hemisphere group recorded from Upper Cretaceous Burmese amber (Coleoptera: Staphylinoidea: Leiodidae). Cretac. Res.78, 161–165 (2017).

Jarzembowski, E. A., Wang, B. & Zheng, D. A new ommatin beetle (Insecta: Coleoptera) with unusual genitalia from mid-Cretaceous Burmese amber. Ommatin beetle Burmese amber. Cretac. Res.71, 113–117 (2017).

Jarzembowski, E. A., Wang, B. & Zheng, D. A new reticulated beetle (Coleoptera: Cupedidae) with aedeagus preserved from mid-Cretaceous amber of Myanmar. Cretac. Res.80, 86–90 (2017).

Zhang, W., Li, H., Shih, C., Zhang, A. & Ren, D. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics34, 384–406 (2018). PubMed

Liu, Z. et al. New minute clubbed beetles (Coleoptera, Monotomidae, Lenacini) from mid-Cretaceous amber of Northern Myanmar. Cretac. Res.107, 104255 (2020).

Chitimia-Dobler, L., Mans, B. J., Handschuh, S. & Dunlop, J. A. A remarkable assemblage of ticks from mid-Cretaceous Burmese amber. Parasitology149, 820–830 (2022). PubMed PMC

Chitimia-Dobler, L. et al. Hard ticks in Burmese amber with Australasian affinities. Parasitology150, 157–171 (2022). PubMed PMC

Lepeco, A. & Melo, G. A. R. The wasp genus †Holopsenella in mid-Cretaceous Burmese amber (Hymenoptera: †Holopsenellidae stat. nov.). Cretac. Res.131, 105089 (2022).

Yamamoto, S., Caron, E. & Bortoluzzi, S. Propiestus archaicus, the first Mesozoic amber inclusion of piestine rove beetles and its evolutionary and biogeographical significance (Coleoptera: Staphylinidae: Piestinae). J. Syst. Paleontol.17, 1257–1270 (2019).

Wood, H. M. & Wunderlich, J. Burma Terrane amber fauna shows connections to Gondwana and transported Gondwanan lineages to the Northern Hemisphere (Araneae: Palpimanoidea). Syst. Biol.72, 1233–1246 (2023). PubMed

Martynova, K. V., Olmi, M., Müller, P. & Perkovsky, E. E. Description of the first sclerogibbid wasp (Hymenoptera: Sclerogibbidae) from Burmese (Myanmar) amber and its phylogenetic significance. J. Syst. Paleontol.17, 1791–1803 (2019).

Jouault, C. Mid-Cretaceous Burmese amber pelecinid wasps (Hymenoptera, Pelecinidae) support the hypothesis of an Asian origin of the family. Ann. Paleontol.107, 102464 (2021).

Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res.106, 104264 .

Peris, D., Kolibáč, J. & Delclòs, X. Cretamerus vulloi gen. et sp. nov., the oldest bark-gnawing beetle (Coleoptera: Trogossitidae) from Cretaceous amber. J. Syst. Palaeontol.12, 879–891 (2014).

Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R Soc. B: Biol. Sci.286, 20182175 (2019). PubMed PMC

Gumovsky, A., Perkovsky, E. & Rasnitsyn, A. Laurasian ancestors and Gondwanan descendants of Rotoitidae (Hymenoptera: Chalcidoidea): What a review of Late Cretaceous Baeomorpha revealed. Cretac. Res.84, 286–322 (2018).

Zhang, Q., Rasnitsyn, A. P., Wang, B. & Zhang, H. Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proc. Geol. Assoc.129, 736–747 (2018).

Chen, J. et al. A new bizarre cicadomorph family in mid-Cretaceous Burmese amber (Hemiptera, Clypeata). Cretac. Res.97, 1–15 (2019).

Peris, D. et al. Unlocking the mystery of the mid-Cretaceous Mysteriomorphidae (Coleoptera: Elateroidea) and modalities in transiting from gymnosperms to angiosperms. Sci. Rep.10, 16854 (2020). PubMed PMC

Yoshizawa, K., Lienhard, C. †Cormopsocidae: A new family of the suborder Trogiomorpha (Insecta: Psocodea) from Burmese amber. Entomol. Sci.23, 208–215 (2020).

Li, Y. D. et al. Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. Proc. R. Soc. B: Biol. Sci.288, 20202730 (2021). PubMed PMC

Uchida, K., Husemann, M. & Kotthoff, U. A new Cretaceous orthopteran family of the Caelifera (order: Orthoptera) from Burmese amber of northern Myanmar. PalZ98, 117–125 (2024).

Costa, C. Systematics and evolution of the tribes Pyrophorini and Heligmini, with description of Campyloxeninae, new subfamily (Coleoptera, Elateridae). Arq. Zool.26, 49–190 (1975).

Johnson, P. J. Elateridae Leach 1815, in American Beetles, Vol. 2, Polyphaga: Scarabaeoidea through Curculionoidea (eds Arnett, R. H. et al.) 160–173 (CRC Press, 2002).

Arias-Bohart, E. T. Malalcahuello ocaresi gen. & sp. n. (Elateridae, Campyloxeninae). ZooKeys508, 1–13 (2015). PubMed PMC

Arias-Bohart, E. T. & Elgueta, M. Catalogue of Chilean Elateridae. Ann. Zool.62, 643–668 (2012).

Arias-Bohart, E. T. & Elgueta, M. Description of Sharon gen. nov. for the Chilean species Asaphes amoenus Philippi, 1861 (Coleoptera: Elateridae). Eur. J. Taxon. 142, 1–15 (2015).

Hoffmannova, J. & Kundrata, R. Annotated catalogue of the click-beetle genera Hapatesus Candèze, 1863 and Toorongus Neboiss, 1957 (Coleoptera: Elateridae) from the Australasian realm. Zootaxa4885, 221–234 (2020). PubMed

Brus, J., Kučera, M. & Popelka, S. Intuitiveness of geospatial uncertainty visualizations: a user study on point symbols. Geografie124, 163–185 (2019).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...