Previously, we reported that the sulphated polysaccharides (SPS)-CF, a water-soluble polysaccharide isolated and purified from Korean green alga Maesaengi (Capsosiphon fulvescens, Chlorophyta), is a glucuronogalactomannan based mainly on the monosaccharide composition determined by high-performance liquid chromatography (HPLC) analysis after 1-phenyl-3-methyl-5-pyrazolone (PMP) labelling of sugars in the acid (trifluoroacetic acid (TFA)) hydrolyzates of SPS-CF, which showed mannose (55.4 mol %), galactose (25.3 mol %) and glucuronic acid (16.3 mol %) as major sugars (Na et al., Int Immunopharmacol 10:364-370, 2010). However, the results of the present study re-performed for monosaccharide composition of this polysaccharide using, in addition to HPLC of PMP-labelled sugars, other separation methods, i.e. high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), gas chromatography with flame ionising detection (GC-FID) and thin-layer chromatography (TLC), clearly demonstrated that the most prominent neutral monosaccharides of SPS-CF are xylose (38.6-49.4 mol %) and rhamnose (39.6-45 mol %), while mannose and galactose are present at a much lesser extent or in negligible amount. These extensive monosaccharide analyses, correlation nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements confirmed the sulphated glucuronorhamnoxylan (ulvan) type of SPS-CF polysaccharide, whose backbone is composed of alternating sequence of 4-linked L-rhamnose-3-sulphate and D-xylose residues (ulvobiose U3s) carrying monomeric D-glucuronic acid or D-glucuronic acid-3-sulphate on O-2 of some L-rhamnose-3-sulphate units as the side chains. The SPS-CF exhibited significant in vitro anti-coagulant activity by which the activated partial thromboplastin time (aPTT) and thrombin time (TT) were significantly prolonged. The results of this study demonstrated that the ulvan SPS-CF isolated from Korean Maesaengi C. fulvescens can be considered a potential anti-coagulant agent.
- MeSH
- antikoagulancia chemie izolace a purifikace farmakologie MeSH
- Chlorophyta metabolismus MeSH
- chromatografie na tenké vrstvě MeSH
- chromatografie plynová MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- mannany chemie izolace a purifikace farmakologie MeSH
- monosacharidy analýza MeSH
- parciální tromboplastinový čas MeSH
- plamínková ionizace MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- trombinový čas MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Glucans are most widespread polysaccharides in the nature. There is a large diversity in their molecular weight and configuration depending on the original source. According to the anomeric structure of glucose units it is possible to distinguish linear and branched α-, β- as well as mixed α,β-glucans with various glycoside bond positions and molecular masses. Isolation of glucans from raw sources needs removal of ballast compounds including proteins, lipids, polyphenols and other polysaccharides. Purity control of glucan fractions is necessary to evaluate the isolation and purification steps; more rigorous structural analyses of purified polysaccharides are required to clarify their structure. A set of spectroscopic, chemical and separation methods are used for this purpose. Among them, NMR spectroscopy is known as a powerful tool in structural analysis of glucans both in solution and in solid state. Along with chemolytic methods [methylation analysis (MA), periodate oxidation, partial chemical or enzymatic hydrolysis, etc.], correlation NMR experiments are able to determine the exact structure of tested polysaccharides. Vibration spectroscopic methods (FTIR, Raman) are sensitive to anomeric structure of glucans and can be used for purity control as well. Molecular weight distribution, homogeneity and branching of glucans can be estimated by size-exclusion chromatography (SEC), laser light scattering (LLS) and viscometry.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The aim of this work is detection of specific glucans extracted from barley grains of three varieties by the flow injection method of fluorescence analysis. The extract composition is monitored by HPLC of neutral sugars and FTIR spectrometry and improved by enzyme treatment (amylase and xylanase). The content of cereal ?-glucans in grains was determined using an enzyme set. The Aniline Blue dye and Fluorochrom (Biosupplies, Australia) were used as fluorescence agents. Both the agents show high sensitivity to ?(1›4) glycosidic bonds. Cereal ?-glucan and also ?-glucan did not form complexes. A statistically significant decrease in cereal ?-glucans was observed in infected grains. Purified extracts from infected grains showed more intense fluorescence than those from corresponding uninfected grains. This difference could be explained by the presence of mould ?-glucans. The flow injection fluorescence analysis is able to detect mouldinfected barley grains.