PURPOSE: This study investigates genes contributing to late-adult corneal dystrophies (LACDs) in aged mice, with potential implications for late-onset corneal dystrophies (CDs) in humans. METHODS: The International Mouse Phenotyping Consortium (IMPC) database, containing data from 8901 knockout mouse lines, was filtered to include late-adult mice (49+ weeks) with significant (P < 0.0001) CD phenotypes. Candidate genes were mapped to human orthologs using the Mouse Genome Informatics group, with expression analyzed via PLAE and a literature review for prior CD associations. Comparative analyses of LACD genes from IMPC and established human CD genes from IC3D included protein interactions (STRING), biological processes (PANTHER), and molecular pathways (KEGG). RESULTS: Analysis identified 14 genes linked to late-adult abnormal corneal phenotypes. Of these, 2 genes were previously associated with CDs in humans, while 12 were novel. Seven of the 14 genes (50%) were expressed in the human cornea based on single-cell transcriptomics. Protein-protein interactions via STRING showed several significant interactions with known human CD genes. PANTHER analysis identified six biological processes shared with established human CD genes. Two genes (Rgs2 and Galnt9) were involved in pathways related to human corneal diseases, including cGMP-PKG signaling, mucin-type O-glycan biosynthesis, and oxytocin signaling. Other candidates were implicated in pathways such as pluripotency of stem cells, MAPK signaling, WNT signaling, actin cytoskeleton regulation, and cellular senescence. CONCLUSIONS: This study identified 14 genes linked to LACD in knockout mice, 12 of which are novel in corneal biology. These genes may serve as potential therapeutic targets for treating corneal diseases in aging human populations.
- MeSH
- dědičné dystrofie rohovky * genetika metabolismus MeSH
- fenotyp MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- stárnutí * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
- MeSH
- abnormality očí * genetika MeSH
- anoftalmie * genetika MeSH
- embryonální vývoj genetika MeSH
- fenotyp MeSH
- kolobom * genetika MeSH
- lidé MeSH
- mikroftalmie * genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- oči MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
- MeSH
- cilie genetika MeSH
- ciliopatie * genetika MeSH
- databáze faktografické MeSH
- genový knockout MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny buněčného cyklu MeSH
- proteiny nervové tkáně MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- MeSH
- delece genu * MeSH
- fenotyp MeSH
- genetické asociační studie * MeSH
- genom * MeSH
- genotyp * MeSH
- internet MeSH
- mezinárodní spolupráce MeSH
- mutageneze MeSH
- myší embryonální kmenové buňky cytologie metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- šíření informací MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.
- MeSH
- celogenomová asociační studie MeSH
- fenotyp MeSH
- genetická pleiotropie MeSH
- genotyp MeSH
- genová ontologie MeSH
- kostní denzita genetika MeSH
- mapy interakcí proteinů MeSH
- mutace MeSH
- myši transgenní MeSH
- myši MeSH
- osteoblasty metabolismus patologie MeSH
- osteoklasty metabolismus patologie MeSH
- osteoporóza genetika metabolismus MeSH
- pohlavní dimorfismus MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery.
- MeSH
- esenciální geny MeSH
- genetické asociační studie metody MeSH
- genomika MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- nemoc genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
- MeSH
- cirkadiánní rytmus genetika MeSH
- komplexy ubikvitinligas genetika MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteiny vázající telomery genetika MeSH
- receptory oxytocinu genetika MeSH
- represorové proteiny genetika MeSH
- serinové endopeptidasy genetika MeSH
- strojové učení MeSH
- transportní systém aminokyselin y+ genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH