The hedgehog signaling pathway plays an important role in vertebrate embryonic development, tissue homeostasis, and tumorigenesis. Constitutive activation of Hh signaling in various human tumors leads to GLI-mediated transcription and tumor progression. Based on the preliminary screening of a large library of known triterpenes that exhibited interesting Hh inhibitory activity, we designed and synthesized a new series of triterpenoid analogues containing aromatic heterocyclic substituents at position C-2 to enhance their interference with Hh signaling. In this study, we evaluated the effect of 15 synthesized triterpenoids on cell proliferation and Hh pathway activity in relevant cancer cell lines. Among these compounds, two derivatives, 11a and 11b, both featuring a furan ring at position C-2, demonstrated potent inhibitory effects on proliferation and induced cell death in nonsmall cell lung cancer (NSCLC) and prostate cancer cell lines exhibiting hyper-activated Hh signaling. Moreover, these compounds significantly reduced GLI-mediated transcription in cell-based reporter assays. Detailed immunoblot analyses revealed that compounds 11a and 11b decreased the expression of endogenous GLI1 protein and its target genes associated with tumor progression and proliferation, such as Cyclin D1, N-Myc, and Bcl-2, in A549 and DU-145 cancer cells. These findings suggest that the antiproliferative effects of 11a and 11b are mediated through inhibition of the Hh signaling pathway and are promising candidates for the development of new anticancer therapies targeting Hh-dependent tumors.
- Publikační typ
- časopisecké články MeSH
A series of triterpenoid pyrones was synthesized and subsequently modified to introduce phthalimide or phthalate moieties into the triterpenoid skeleton. These compounds underwent in vitro cytotoxicity screening, revealing that a subset of six compounds exhibited potent activity, with IC50 values in the low micromolar range. Further biological evaluations, including Annexin V and propidium iodide staining experiment revealed, that all compounds induce selective apoptosis in cancer cells. Measurements of mitochondrial potential, cell cycle analysis, and the expression of pro- and anti-apoptotic proteins confirmed, that apoptosis was mediated via the mitochondrial pathway. These findings were further supported by cell cycle modulation and DNA/RNA synthesis studies, which indicated a significant increase in cell accumulation in the G0/G1 phase and a marked reduction in S-phase cells, alongside a substantial inhibition of DNA synthesis. The activation of caspase-3 and the cleavage of PARP, coupled with a decrease in the expression of Bcl-2 and Bcl-XL proteins, underscored the induction of apoptosis through the mitochondrial pathway. Given their high activity and pronounced effect on mitochondria function, trifluoromethyl pyrones 1f and 2f, and dihydrophthalimide 2h have been selected for further development.
- MeSH
- apoptóza MeSH
- DNA metabolismus MeSH
- ftalimidy farmakologie MeSH
- kyseliny ftalové * MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- protinádorové látky * terapeutické užití MeSH
- pyrony farmakologie MeSH
- triterpeny * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Cellular growth and the preparation of cells for division between two successive cell divisions is called the cell cycle. The cell cycle is divided into several phases; the length of these particular cell cycle phases is an important characteristic of cell life. The progression of cells through these phases is a highly orchestrated process governed by endogenous and exogenous factors. For the elucidation of the role of these factors, including pathological aspects, various methods have been developed. Among these methods, those focused on the analysis of the duration of distinct cell cycle phases play important role. The main aim of this review is to guide the readers through the basic methods of the determination of cell cycle phases and estimation of their length, with a focus on the effectiveness and reproducibility of the described methods.
In this work, a large set of betulinic acid derivatives modified with various aromatic substituents at the position C-3 were prepared via Suzuki-Myiaura cross-coupling. All compounds were tested for their in vitro cytotoxic activity in 8 cancer and 2 healthy cell lines. Derivatives 6h, 6i, and 6o had the lowest IC50 in the CCRF-CEM cell line (0.69-4.0 μM) and had high selectivity. In addition, 6h and 6i also showed significant activity in daunorubicin-resistant CEM and taxol-resistant K562 cell lines; therefore, they were selected for the evaluation of the mechanism of action. First, the effect of 6h, 6i, and 6o on cell death induction was studied. To our surprise, we have not detected almost any apoptotic cells, even following a long-time exposure of CCRF-CEM cells to the compounds. On the other hand, a dramatic cell number decrease was observed, proportional to the time of the compound's exposure. Based on this data it was concluded that the effect of compounds is cytostatic rather than cytotoxic, which was further confirmed by subsequent studies of the impact of 6h, 6i, and 6o on the cell cycle. Detailed cell cycle analysis revealed a block in the G1 phase accompanied by reduced expression of phosphorylated forms of the RB protein as well as cyclin A protein. Evaluation of the pharmacological properties of the most promising compounds revealed their high stability in the presence of phosphate buffer, human plasma, and microsomes and limited permeability determined using permeability through artificial membrane (PAMPA) and cell permeability assay: Caco-2 and MDCK-MDR1 cell lines. Compounds 6h, 6i, and 6o were selected for further drug development; their cytostatic effect may be advantageous in this process since we expect fewer non-specific interactions and toxicity than in highly cytotoxic compounds. In addition, the activity of 6h and 6i against resistant CEM-DNR and K562-TAX leukemic cell lines makes them promising as a possible future alternative to currently used therapies.
- MeSH
- apoptóza MeSH
- Caco-2 buňky MeSH
- cytostatické látky * farmakologie MeSH
- fenotyp MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory * MeSH
- pentacyklické triterpeny farmakologie MeSH
- protinádorové látky * farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A set of fifteen triterpenoid pyrazines and pyridines was prepared from parent triterpenoid 3-oxoderivatives (betulonic acid, dihydrobetulonic acid, oleanonic acid, moronic acid, ursonic acid, heterobetulonic acid, and allobetulone). Cytotoxicity of all compounds was tested in eight cancer and two non-cancer cell lines. Evaluation of the structure-activity relationships revealed that the triterpenoid core determined whether the final molecule is active or not, while the heterocycle is able to increase the activity and modulate the specificity. Five compounds (1b, 1c, 2b, 2c, and 8) were found to be preferentially and highly cytotoxic (IC50 ≈ 1 μM) against leukemic cancer cell lines (CCRF-CEM, K562, CEM-DNR, or K562-TAX). Surprisingly, compounds 1c, 2b, and 2c are 10-fold more active in multidrug-resistant leukemia cells (CEM-DNR and K562-TAX) than in their non-resistant analogs (CCRF-CEM and K562). Pharmacological parameters were measured for the most promising candidates and two types of prodrugs were synthesized: 1) Sugar-containing conjugates, most of which had improved cell penetration and retained high cytotoxicity in the CCRF-CEM cell line, unfortunately, they lost the selectivity against resistant cells. 2) Medoxomil derivatives, among which compounds 26-28 gained activities of IC50 0.026-0.043 μM against K562 cells. Compounds 1b, 8, 21, 22, 23, and 24 were selected for the evaluation of the mechanism of action based on their highest cytotoxicity against CCRF-CEM cell line. Several experiments showed that the majority of them cause apoptosis via the mitochondrial pathway. Compounds 1b, 8, and 21 inhibit growth and disintegrate spheroid cultures of HCT116 and HeLa cells, which would be important for the treatment of solid tumors. In summary, compounds 1b, 1c, 2b, 2c, 24, and 26-28 are highly and selectively cytotoxic against cancer cell lines and were selected for future in vivo tests and further development of anticancer drugs.
- MeSH
- chemorezistence MeSH
- fytogenní protinádorové látky * farmakologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- nádorové buněčné linie MeSH
- prekurzory léčiv * farmakologie MeSH
- protinádorové látky * farmakologie MeSH
- pyraziny farmakologie MeSH
- pyridiny farmakologie MeSH
- triterpeny * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gene inactivation of the cyclin-dependent kinase inhibitors p16INK4a, p15INK4b and p21WAF is frequently mediated by promoter gene methylation, whereas histone deacetylases (HDACs) control gene expression through their ability to deacetylate proteins. The effect of suberohydroxamic acid (SBHA) and 5-Aza-2'-deoxycytidine (Decitabine) (DAC) treatments on the transcription of CDKN2A, CDKN2B and CDKN1A genes, and their effects on molecular biological behavior were examined in two myeloma cell lines, RPMI8226 and U266, which differ in p53-functionality and IL-6 expression. In both tested myeloma cell lines, a non-methylated state of the CDKN2B gene promoter region was detected with normal gene expression, and the same level of p15INK4b protein was detected by immunocytochemical staining. Furthermore, in myeloma cells treated with SBHA and DAC alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53-functional, without IL-6 expression), whereas in the U266 cell line (p53 deleted, expressing IL-6) only p21WAF expression was significantly increased. Moreover, the analysis revealed that treatment with DAC induced DNMT3B enhancement in U266 cells. In conclusion, in myeloma cells with IL-6 expression, significantly increased DNMT3B expression indicated the tumorigenic consequences of 5-Aza-2'deoxycytidine treatment, which requires careful use in diseases involving epigenetic dysregulation, such as multiple myeloma (MM).
- MeSH
- decitabin * farmakologie MeSH
- DNA-(cytosin-5-)methyltransferasa * genetika metabolismus MeSH
- epigeneze genetická * MeSH
- inhibitor p15 cyklin-dependentní kinasy genetika metabolismus MeSH
- inhibitor p16 cyklin-dependentní kinasy genetika metabolismus MeSH
- interleukin-6 genetika metabolismus MeSH
- lidé MeSH
- metylace DNA MeSH
- mnohočetný myelom * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- umlčování genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A set of new substituted dienes were synthesized from betulinic acid by its oxidation to 30-oxobetulinic acid followed by the Wittig reaction. Cytotoxicity of all compounds was tested in vitro in eight cancer cell lines and two noncancer fibroblasts. Almost all dienes were more cytotoxic than betulinic acid. Compounds 4.22, 4.30, 4.33, 4.39 had IC50 below 5 μmol/L; 4.22 and 4.39 were selected for studies of the mechanism of action. Cell cycle analysis revealed an increase in the number of apoptotic cells at 5 × IC50 concentration, where activation of irreversible changes leading to cell death can be expected. Both 4.22 and 4.39 led to the accumulation of cells in the G0/G1 phase with partial inhibition of DNA/RNA synthesis at 1 × IC50 and almost complete inhibition at 5 × IC50. Interestingly, compound 4.39 at 5 × IC50 caused the accumulation of cells in the S phase. Higher concentrations of tested drugs probably inhibit more off-targets than lower concentrations. Mechanisms disrupting cellular metabolism can induce the accumulation of cells in the S phase. Both compounds 4.22 and 4.39 trigger selective apoptosis in cancer cells via intrinsic pathway, which we have demonstrated by changes in the expression of the crucial apoptosis-related protein. Pharmacological parameters of derivative 4.22 were superior to 4.39, therefore 4.22 was the finally selected candidate for the development of anticancer drug.
- MeSH
- alkadieny chemická syntéza chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- molekulární struktura MeSH
- pentacyklické triterpeny chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- psi MeSH
- screeningové testy protinádorových léčiv MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this work, 35 new derivatives of betulonic, dihydrobetulonic and ursonic acid were prepared including 30 aminothiazoles and all of them were tested for their in vitro cytotoxic activity in eight cancer cell lines and two non-cancer fibroblasts. Compounds with the IC50 below 5 μM in CCRF-CEM cells and low toxicity in non-cancer fibroblasts (4m, 5c, 5m, 6c, 6m, 7b, and 7c) were further subjected to tests of pharmacological parameters yielding the final set for advanced biological evaluation (4m, 5m, 6m, and 7b). It was proved by several methods, that all of them trigger apoptosis via the intrinsic pathway and derivatives 5m and 7b are the most effective (IC50 2.4 μM and 3.6 μM). They are the best candidates to become potentially new anticancer drugs and will be subjected to in vivo tests in mice. In addition, compounds 6b and 6c deserve more attention because their activity is not limited only to chemosensitive CCRF-CEM cell line. Specifically, compound 6b is highly active against K562 leukemic cell line (0.7 μM) and its IC50 activity in colon cancer HCT116 cell line is 1.0 μM. Compound 6c is active in both normal K562 and resistant K562-TAX cell lines (IC50 3.4 μM and 5.4 μM) and both colon cancer cell lines (HCT116 and HCT116p53-/-, IC50 3.5 μM and 3.4 μM).
- MeSH
- apoptóza účinky léků MeSH
- fibroblasty účinky léků MeSH
- kultivované buňky MeSH
- kyselina olenalová analogy a deriváty chemie farmakologie MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mikrozomy chemie metabolismus MeSH
- molekulární struktura MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- terpeny chemická syntéza chemie farmakologie MeSH
- thiazoly chemická syntéza chemie farmakologie MeSH
- triterpeny chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Three series of isomeric pyrrolo- and furo-fused 7-deazapurine ribonucleosides were synthesized and screened for cytostatic and antiviral activity. The synthesis was based on heterocyclizations of hetaryl-azidopyrimidines to form the tricyclic heterocyclic bases, followed by glycosylation and final derivatizations through cross-coupling reactions or nucleophilic substitutions. The pyrrolo[2',3':4,5]pyrrolo[2,3- d]pyrimidine and furo[2',3':4,5]pyrrolo[2,3- d]pyrimidine ribonucleosides were found to be potent cytostatics, whereas the isomeric pyrrolo[3',2',4,5]pyrrolo[2,3- d]pyrimidine nucleosides were inactive. The most active were the methyl, methoxy, and methylsulfanyl derivatives exerting submicromolar cytostatic effects and good selectivity toward cancer cells. We have shown that the nucleosides are activated by intracellular phosphorylation and the nucleotides get incorporated to both RNA and DNA, where they cause DNA damage. They represent a new type of promising candidates for preclinical development toward antitumor agents.
- MeSH
- antivirové látky chemická syntéza chemie farmakologie MeSH
- furany chemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- puriny chemie MeSH
- pyrroly chemie MeSH
- ribonukleosidy chemická syntéza chemie farmakologie MeSH
- techniky syntetické chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microtubule dynamics is one of the major targets for new chemotherapeutic agents. This communication presents the synthesis and biological profiling of steroidal dimers based on estradiol, testosterone and pregnenolone bridged by 2,6-bis(azidomethyl)pyridine between D rings. The biological profiling revealed unique properties of the estradiol dimer including cytotoxic activities on a panel of 11 human cell lines, ability to arrest in the G2/M phase of the cell cycle accompanied with the attenuation of DNA/RNA synthesis. Thorough investigation precluded a genomic mechanism of action and revealed that the estradiol dimer acts at the cytoskeletal level by inhibiting tubulin polymerization. Further studies showed that estradiol dimer, but none of the other structurally related dimeric steroids, inhibited assembly of purified tubulin (IC50, 3.6 μM). The estradiol dimer was more potent than 2-methoxyestradiol, an endogenous metabolite of 17β-estradiol and well-studied microtubule polymerization inhibitor with antitumor effects that was evaluated in clinical trials. Further, it was equipotent to nocodazole (IC50, 1.5 μM), an antimitotic small molecule of natural origin. Both estradiol dimer and nocodazole completely and reversibly depolymerized microtubules in interphase U2OS cells at 2.5 μM concentration. At lower concentrations (50 nM), estradiol dimer decreased the microtubule dynamics and growth life-time and produced comparable effect to nocodazole on the microtubule dynamicity. In silico modeling predicted that estradiol dimer binds to the colchicine-binding site in the tubulin dimer. Finally, dimerization of the steroids abolished their ability to induce transactivation by estrogen receptor α and androgen receptors. Although other steroids were reported to interact with microtubules, the estradiol dimer represents a new structural type of steroid inhibitor of tubulin polymerization and microtubule dynamics, bearing antimitotic and cytotoxic activity in cancer cell lines.
- MeSH
- buněčný cyklus MeSH
- estradiol chemie farmakologie MeSH
- estrogeny chemie farmakologie MeSH
- lidé MeSH
- mikrotubuly účinky léků fyziologie MeSH
- modulátory tubulinu chemie farmakologie MeSH
- nádorové buňky kultivované MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- polymerizace MeSH
- proliferace buněk MeSH
- tubulin chemie účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH